Lesson Plan of M. Tech. Computer Science Engineering Deptt.
2nd Semester

Subject : Advance Algorithms (MT-CSE-18-21)

Day					Test/Assignment
Day 1	Sorting	Lecture			
Day 2	Review of various sorting	Lecture			
	algorithms				
Day 3	Topological sorting	Lecture			
Day 4	Graph	Lecture			
Day 5	Definitions and Elementary	Lecture			
	Algorithms				
Day 6	Shortest path by BFS	Lecture			
Day 7	Shortest path in edge-weighted case	Lecture			
	(Dijkasra's)				
Day 8	Depth-first search and computation	Lecture	Assignment 1		
	of strongly connected components	<u> </u>			
Day 9	Emphasis on correctness proof of	Lecture			
	the algorithm and time/space				
D10	analysis	T 4			
Day10	Example of amortized analysis. Flow-Networks	Lecture			
Day11		Lecture			
Day12	Maxflow-mincut theorem	Lecture			
Day13	Ford-Fulkerson Method to compute	Lecture			
Doy 1.4	maximum flow Edmond-Karp maximum-flow	Lecture			
Day14	Edmond-Karp maximum-flow algorithm	Lecture			
Day15	Graph Matching	Lecture			
Day15 Day16	Algorithm to compute maximum	Lecture			
Day10	matching	Lecture			
Day17	Characterization of maximum	Lecture			
Bayır	matching by augmenting paths	Lecture			
Day18	Edmond's Blossom algorithm to	Lecture	Assignment 2		
	compute augmenting path.	2000010	1 10018 =		
Day19	Shortest Path in Graphs	Lecture			
Day20	Floyd-Warshall algorithm	Lecture			
Day21	Introduction to dynamic	Lecture			
	programming paradigm				
Day22	More examples of dynamic	Lecture			
	programming				
Day23	Matrix Computations	Lecture			
Day24	Strassen's algorithm	Lecture			
Day25	Introduction to divide and conquer	Lecture			
	paradigm				
Day26	Inverse of a triangular matrix	Lecture			
Day27	Relation between the time	Lecture	Assignment 3		
	complexities of basic matrix				
	operations				
Day28	UP-decomposition	Lecture			
Day29	Linear Programming	Lecture			

Day30	Geometry of the feasibility region	Lecture	
Day31	Simplex algorithm NP-	Lecture	
	completeness		
Day32	Examples	Lecture	
Day33	Proof of NP-hardness and NP-	Lecture	
	completeness		
Day34	Modulo Representation of	Lecture	
	integers/polynomials		
Day35	Chinese Remainder Theorem	Lecture	Assignment 4
Day36	Conversion between base-	Lecture	
	representation		
Day37	Modulo-representation	Lecture	
Day38	Extension to polynomials	Lecture	
Day39	Application: Interpolation problem	Lecture	

Lesson Plan of M. Tech. Computer Science Engineering Deptt.
2nd Semester

Subject : Soft Computing (MT-CSE-18-22)

Day 2 I Day 3 I	Introduction to Soft Computing	Lecture	
Day 3 I		Dectare	
	Neural Networks	Lecture	
	Evolution of Computing	Lecture	
Day 4	Soft Computing Constituents	Lecture	
	From Conventional AI to	Lecture	
- 1	Computational Intelligence		
	From Conventional AI to	Lecture	
	Computational Intelligence		
	Machine Learning Basics	Lecture	
	Fuzzy Logic	Lecture	Assignment 1
	Fuzzy Sets	Lecture	
	Operations on Fuzzy Sets	Lecture	
	Fuzzy Relations	Lecture	
	Membership Functions	Lecture	
	Fuzzy Rules	Lecture	
	Fuzzy Reasoning	Lecture	
	Fuzzy Inference Systems	Lecture	
	Fuzzy Expert Systems	Lecture	
	Fuzzy Decision Making	Lecture	
	Implementation using	Lecture	Assignment 2
	Python/Matlab	Lecture	11001811110111 2
	Neural Networks	Lecture	
	Machine Learning Using Neural	Lecture	
-	Network	200000	
	Machine Learning Using Neural	Lecture	
I	Network		
	Adaptive Networks	Lecture	
	Feed forward Networks	Lecture	
	Supervised Learning Neural	Lecture	
	Networks		
Day25 I	Radial Basis Function Networks	Lecture	
	Reinforcement Learning	Lecture	
	Unsupervised Learning Neural	Lecture	Assignment 3
	Networks		
	Unsupervised Learning Neural	Lecture	
-	Networks		
Day29	Adaptive Resonance architectures	Lecture	
	Advances in Neural networks	Lecture	
	Implementation using	Lecture	
_	Python/Matlab		
	Genetic Algorithms	Lecture	
	Introduction to Genetic Algorithms	Lecture	
-	(GA)	.	
	Applications of GA in Machine	Lecture	
-	Learning	.	

Day35	Machine Learning Approach to Knowledge Acquisition	Lecture	Assignment 4
Day36	Implementation using Python/Matlab	Lecture	

Lesson Plan of M. Tech. Computer Science Engineering Deptt.
2nd Semester

Subject : Advanced Computer Architecture (MT-CSE-18-24(i))

Day	Topic / Chapter Covered	Academic Activity Test/Assign	
Day 1	Instruction Level Parallelism (ILP):	Lecture	
	Concepts & Challenges		
Day 2	Data Dependences and Hazards,	Lecture	
	Control Dependences		
Day 3	Basic Compiler Techniques for	Lecture	
	Exposing ILP		
Day 4	Basic Pipeline Scheduling and	Lecture	
	Loop Unrolling		
Day 5	Reducing Branch Costs with	Lecture	
	Advanced Branch Prediction		
Day 6	Overcoming Data Hazardous with	Lecture	
	Dynamic Scheduling		
Day 7	Tomasulo's Approach, Hardware	Lecture	
	Based Speculation		
Day 8	Exploiting ILP Using Multiple	Lecture	Assignment 1
D 0	Issue and Static Scheduling	.	
Day 9	VLIW & Superscalar Processors	Lecture	
Day10	Advanced Techniques For	Lecture	
	Instruction Delivery and		
Day 11	Speculation. Data Level Parallelism in Vector	Lecture	
Day11	SIMD & GPU Architectures:	Lecture	
Day12	Vector Architecture	Lecture	
Day13	Working of Vector Processors,	Lecture	
Day13	Vector Execution Time	Lecture	
Day14	Multiple Lanes, Vector Registers	Lecture	
Day15	Memory Banks, Stride	Lecture	
Day16	Gather Scatter	Lecture	
Day17	SIMD Instruction Set Extensions	Lecture	
Duyir	for Multimedia	Lecture	
Day18	Graphics Processing Units, Vector	Lecture	Assignment 2
	Architecture V/S GPUs		6
Day19	Multimedia SIMD V/S GPUs	Lecture	
Day20	Detecting and Enhancing Loop-	Lecture	
	Level Parallelism – Finding		
	Dependences		
Day21	Eliminating Dependent	Lecture	
	Computations.		
Day22	Thread-Level Parallel Parallelism:	Lecture	
	Multiprocessor Architecture		
Day23	Centralized Shared-Memory	Lecture	
	Architectures, Cache Coherence		
	Problem		
Day24	Schemes Enforcing Coherence,	Lecture	
	Snooping Coherence Protocol		

Day25	Extensions to basic coherence protocol	Lecture	
Day26	Distributed Shared-Memory and Directory-Based Coherence	Lecture	
Day27	Warehouse-Scale Computers (WSC) to Exploit Request-Level and Data-Level Parallelism	Lecture	Assignment 3
Day28	WSC V/S Servers, Programming Models and Workloads for WSC	Lecture	
Day29	Architecture of Warehouse-Scale Computers	Lecture	
Day30	Physical Infrastructure and Costs of WSC	Lecture	
Day31	Memory Hierarchy: Basics of Memory Hierarchy	Lecture	
Day32	Optimization of Cache Performance, Memory Technology & Optimizations	Lecture	
Day33	Virtual Memory – Fast Address Translation	Lecture	
Day34	Selecting Page Size, Protection of Virtual Memory	Lecture	
Day35	MIMD Architectures: Architectural Concepts of Distributed	Lecture	Assignment 4
Day36	Shared Memory MIMD Architectures (UMA, NUMA, COMA, CC-NUMA)	Lecture	
Day37	Interconnection Networks	Lecture	
Day38	Direct Interconnection Networks (Linear Array, Ring, Star, 2D Mesh, Hyper Cubes)	Lecture	
Day39	Switching Techniques	Lecture	
Day40	Dynamic Interconnection Networks (Shared Bus, Crossbar, Multistage Networks)	Lecture	
Day41	Specifications of Top Three Super Computers of Top500 List	Lecture	

Lesson Plan of M. Tech. Computer Science Engineering Deptt.
2nd Semester

Subject: Data Preparation and Aanlysis (MT-CSE-18-23(i))

Day	Day Topic / Chapter Covered Academic Activity Test/A		Test/Assignment
Day 1	Data Gathering and Preparation	Lecture	
Day 2	High Cardinality Variable in	Lecture	
	Descriptive Stats		
Day 3	High Cardinality Variable in	Lecture	
	Predictive Modeling		
Day 4	Outliers	Lecture	
Day 5	Type of outliers	Lecture	
Day 6	Treatment of outliers	Lecture	
Day 7	Data formats	Lecture	
Day 8	Parsing and transformation	Lecture	Assignment 1
Day 9	Scalability and real-time issues	Lecture	
Day10	Data Cleaning: Consistency	Lecture	
	checking		
Day11	Heterogeneous and missing data	Lecture	
Day12	Noisy Data	Lecture	
Day13	Data Cleaning as Process	Lecture	
Day14	Data Integration	Lecture	
Day15	Data Transformation and	Lecture	
	segmentation		
Day16	Data Reduction	Lecture	
Day17	Data Cube Aggregation	Lecture	
Day18	Attribute Subset Selection	Lecture	Assignment 2
Day19	Concept hierarchy Generation	Lecture	
Day20	Exploratory Analysis	Lecture	
Day21	Descriptive and comparative	Lecture	
	statistics		
Day22	Clustering	Lecture	
Day23	Clustering Hierarchical	Lecture	
Day24	Partitioning methods	Lecture	
Day25	Constraint-Based Cluster Analysis	Lecture	
Day26	Association Mining	Lecture	
Day27	Apriori Algorithm	Lecture	Assignment 3
Day28	Association to Correlations	Lecture	
Day29	Hypothesis Generation	Lecture	
Day30	Visualization	Lecture	
Day31	Data Visualization techniques (for	Lecture	
	measurement and categorical data)		
Day32	Interactive visualization techniques	Lecture	
Day33	Common misuses of data visualization	Lecture	
Day34	Techniques for Statistical Inference Time series	Lecture	
Day35	Geolocated data	Lecture	Assignment 4
Day36	Correlations and connections	Lecture	
Day37	Hierarchies and networks	Lecture	
Lays,	THE ALCOHOL WING HELW OLKS	Lecture	

Day38	3 Interactivity	Lecture	