Lesson Plan of Mechanical Engineering Deptt. 8th Semester

Subject : Automobile Engineering (ME-402N)

- 1. Students will be able to Develop a strong base for understanding future developments in the automobile industry.
- 2. Students will be able to Explain the working of various parts like engine, transmission, gear box etc.
- 3. Students will be able to Describe how the brakes and the suspension systems operate.
- 4. Students will be able to Understand the steering geometry and emission control system.

Day	Topic / Chapter Covered	Academic Activity	Test/Assignment
Day 1	Brief history of automobiles, Main	Lecture	
	components of an automobile, Brief		
	description of each component		
Day 2	Brief description of constructional	Lecture	
	details and working of a four stroke		
	I.C. Engine		
Day 3	S.I. Engines and C.I. Engines	Lecture	
	including lately developed		
	overhead cam shaft		
Day 4	Multi-cylinder engines,	Lecture	
	Introduction to recent developments		
	in I.C Engine		
Day 5	Direct injection systems, Multi-	Lecture	
	point fuel injection systems		
Day 6	Introduction, Brief description of	Lecture	
	different components of		
	Transmission System.		
Day 7	Introduction to Clutch and its	Lecture	
	different types		
Day 8	Principle of Friction Clutch, Clutch	Lecture	Assignment 1
	Lining and friction materials used		
	in Friction Clutches		
Day 9	Torque transmitted, Brief	Lecture	
	description of Cone Clutch, Single		
	Plate and Multiplate		
Day10	Clutches	Lecture	
Day11	Dry and wet clutches, Automatic	Lecture	
	clutch action ,Centrifugal clutches		
Day12	Electromagnetic clutches, Fluid	Lecture	
	Flywheel		
Day13	Gear Box Air resistance, Gradient	Lecture	
	resistance and rolling resistance		
	coming across a moving		
	automobile		
Day14	Tractive effort, Variation of tractive	Lecture	
	effort with speed		
Day15	Performance curves (object and	Lecture	

	need of a gear box), Sliding mesh		
D 16	gear box	T .	
Day16	Control mechanism, Sliding type	Lecture	
	selector mechanism, Ball type		
	selector mechanism		
Day17	Steering column gear shift control,	Lecture	
	Constant mesh gear box		
Day18	Synchromesh device, Automatic	Lecture	Assignment 2
	transmission in general, AP		
	automatic gear box		
Day19	Torque converter, Torque converter	Lecture	
	with direct drive, Lubrication of		
	Gear Box		
Day20	Functions and requirements of a	Lecture	
	propeller shaft, Universal Joint		
Day21	Constructional forms of universal	Lecture	
	joints, Flexible-ring joints		
Day22	Rubber-bushed flexible joints.	Lecture	
	Constant- velocity joints		
Day23	Principle operation of Differential,	Lecture	
2	Constructional details of a typical		
	Differential unit		
Dav24	Multi-plate clutch type traction	Lecture	
,_	control device. Brake Functions and		
	methods of operation. Brake		
	efficiency		
Dav25	Flementary theory of shoe brake &	Lecture	
Duy25	shoe adjustments. A modern rear-	Lecture	
	wheel brake		
Dav26	Disc brakes Brake linkages	Lecture	
Day20	Leverage and adjustment of the	Lecture	
	brake linkage		
Day 27	Serve and newer operated brokes	Locturo	Assignment 2
Day27	Vacuum brake operation	Lecture	Assignment 5
Dev29	Vacuum brake operation	Looturo	
Day28	dotaile and working Direct action	Lecture	
	details and working, Direct action		
D 20	vacuum servos,	T (
Day29	Power-operated brakes	Lecture	
Day30	A dual power air brake system,	Lecture	
	Suspension principles, Road		
	irregularities and human		
	susceptibility	-	
Day31	Suspension system, Damping,	Lecture	
	Double tube damper, Single tube		
	damper, Lever arm type damper,		
	Springs-Leaf springs, Coil and		
	torsion springs		
Day32	variable rate springs, Composite	Lecture	
	leaf springs, Rubber springs, Air		
	springs, Adjustable and self-		
	adjusting suspensions		
Day33	Interconnected air and liquid	Lecture	
	suspensions, Independent		
	suspension system, Different		
Dav34	independent suspension layouts	Lecture	

Day35	Steering Geometry -Castor,	Lecture	Assignment 4
	Camber, Kingpin inclination,		
	Combined angle, Toe-in, Steering		
	system-basic aims, Ackerman		
	linkage		
Day36	Steering linkages for independent	Lecture	
	suspension, Center point steering,		
	Co-starring or trailing		
Day37	Action	Lecture	
Day38	Cornering power, Self-righting	Lecture	
	torque, Steering characteristics-over		
	steer and under		
Day39	steer, Axle beam	Lecture	
Day40	Stub-axle construction, Steering	Lecture	
	column, Reversible and irreversible		
	steering, Rack- and-pinion steering		
	mechanism		
Day41	Effect of toe-in on steering, Power	Lecture	
	steering, Vickers System		
Day42	Emission control through catalytic	Lecture	
	converter, Double catalytic		
	converter, Aspects of pollution		
	control in Automobiles		

Lesson Plan of Mechanical Engineering Deptt. 8th Semester

Subject : Foundary Engineering (ME-422N)

- 1. Express Knowledge about the fundamentals of the casting, basic terminology related to casting process.
- 2. Decide the alternative method for the manufacturing of component for engineering Applications.
- 3. Select the methods of the casting and Decide correct melting practice of different cast alloy & different melt-treatments.
- 4. Demonstrate the ability to select the proper molding material, type of furnace with relevant refractory material, use appropriate casting design and temperature measurement device to obtain quality cast products.
- 5. Minimize the defects generated during casting.

Day	Topic / Chapter Covered	Academic Activity	Test/Assignment
Day 1	Introduction to metal casting and	Lecture	
	foundry industry in modern		
	industrial scenario		
Day 2	Advantages and limitations of	Lecture	
	casting methods		
Day 3	Classification of foundries.	Lecture	
	Different sections in a foundry and		
	their functions.	_	
Day 4	Important cast metals and alloys-	Lecture	Assignment 1
	their composition, properties and		
	uses.		
Day 5	Types of patterns, brief	Lecture	
	classification of pattern making		
	materials	T /	
Day 6	Consideration in selection of	Lecture	
D	pattern materials	T 4	
Day /	Color coding, pattern allowances,	Lecture	
Dary 9	Lingradiants of common time of	Lastura	Assistment 2
Day 8	moulding and core making conde	Lecture	Assignment 2
Day 0	Core making and core making sands	Lastura	
Day 9	and behavior testing of sonds and	Lecture	
	clay		
Dav10	Classification of molding processes	Lactura	
Day10	and casting processes	Lecture	
Dav11	Brief description of all processes	Lecture	
DayII	such as green sand dry sand loam	Lecture	
	sand floor		
Dav12	Pit and machine molding	Lecture	
Dav13	Shell molding. CO ₂ silicate process	Lecture	Assignment 3
Dav14	Investment casting process.	Lecture	
,	permanent moulding process		
Dav15	Gravity and pressure die casting	Lecture	
Day16	Centrifugal casting process	Lecture	

Day17	Classification, basic consideration	Lecture	
Day18	Gating ratio, gating practice for ferrous and nonferrous alloys, pouring equipment	Lecture	Assignment 4
Day19	Function of riser, directional and progressive solidification	Lecture	
Day20	Centerline feeding resistance, riser efficiency	Lecture	
Day21	Riser design consideration, risering curves	Lecture	
Day22	Cain's, N.R.L and modulus method	Lecture	
Day23	Feeding distance feeding aids, blind and atmospheric risers.	Lecture	Assignment 5
Day24	Melting of cast iron, Mechanical features of cupola	Lecture	
Day25	Operational steps of cupola operation	Lecture	
Day26	Principles of cupola operation	Lecture	
Day27	Advanced practices in the cupola operation	Lecture	Assignment 6
Day28	Melting of aluminum based alloys	Lecture	
Day29	Mold treatments of aluminum based alloys such as dressing	Lecture	Assignment 7
Day30	Grain refining, and modification of copper based alloys	Lecture	
Day31	Melting of copper based alloys	Lecture	
Day32	Mold treatments of copper based alloys such as dressing	Lecture	
Day33	Grain refining, and modification of copper based	Lecture	
Day34	Alloys	Lecture	
Day35	Casting defects, their causes and remedies	Lecture	Assignment 8
Day36	Shop floor quality control tests such as composition control	Lecture	
Day37	Wedge test, fluidity, temperature measurement	Lecture	
Day38	Casting Modification by different methods like Friction stir processing	Lecture	

Lesson Plan of Mechanical Engineering Deptt. 8th Semester

Subject : Manufacturing Management (ME-426N)

- 1. Students will be able to attain the theoretical knowledge of production & operation management.
- 2. Students will be able to attain the theoretical knowledge of the concept of plant location and layout.
- 3. Students will be able to attain the theoretical knowledge of material handling and management.
- 4. Students will be able to attain the theoretical knowledge of Waste Management & Automation.

Day	Topic / Chapter Covered	Academic Activity	Test/Assignment
Day 1	Introduction	Lecture	
Day 2	Historical evolution of production	Lecture	
	and operation management		
Day 3	Concept of Production	Lecture	
Day 4	Production system	Lecture	Assignment 1
Day 5	Production Management	Lecture	
Day 6	Operation system	Lecture	
Day 7	Operation management	Lecture	
Day 8	Managing global operation	Lecture	
Day 9	Scope of production	Lecture	
Day10	Operation management	Lecture	
Day11	Introduction and Meaning, Need for	Lecture	
	Selecting a Suitable Location		
Day12	Factors influencing Plant location	Lecture	
Day13	Plant location	Lecture	Assignment 2
Day14	Location theories	Lecture	
Day15	Location models, Location	Lecture	
	economics		
Day16	Plant layout, Classification of	Lecture	
	layout		
Day17	Design of Product layout, Design of	Lecture	
	Process layout		
Day18	Service layout, Organization of	Lecture	
	physical facilities.		
Day19	Introduction, Objectives of Material	Lecture	
	Handling, Principles of Material		
	Handling		
Day20	Selection of Material Handling	Lecture	
	Equipment, Evaluation of Material		
	Handling System		
Day21	Material Handling Equipment	Lecture	
Day22	Guidelines for Effective Utilization	Lecture	
	of Material Handling Equipment		
Day23	Relationship Between Plant Layout	Lecture	Assignment 3
	and Material Handling		
Day24	Scope and Function of Material	Lecture	

	Management		
Day25	Material Planning and Control,	Lecture	
	Inventory Control		
Day26	Standardization, Simplification	Lecture	
Day27	Ergonomics	Lecture	
Day28	Just-in-Time(JIT) Manufacturing	Lecture	
Day29	Introduction, Reasons for	Lecture	
	Generation and Accumulation of		
	Obsolete		
Day30	Surplus and Scrap Items	Lecture	
Day31	Identification and Control of Waste	Lecture	
Day32	Disposal of Waste	Lecture	
Day33	Introduction, Types of Automation	Lecture	
Day34	Computer Integrated	Lecture	
	Manufacturing		
Day35	Reasons for Automation,	Lecture	Assignment 4
	Advantages and Disadvantages of		
	Automation, Automation Strategies		
Day36	Automated Flow Lines	Lecture	
Day37	Automated Guided Vehicles	Lecture	
	System		
Day38	Automated Storage/Retrieval	Lecture	
	System.		

Lesson Plan of Mechanical Engineering Deptt. 8th Semester

Subject : Power Plant Engineering (ME-404N)

- 1. To introduce about the different sources of energy, hydrology and hydro power generation.
- 2. To analyze the steam power cycles, steam generators, fuels and different handling systems in power plants.
- 3. To understand the concept of combined cycles power generation and diesel engine power plants.
- 4. To know about the nuclear energy and the economics of power generation.

Day	Topic / Chapter Covered	Academic Activity	Test/Assignment
Day 1	Conventional and non conventional sources of energy, geothermal power plants	Lecture	
Day 2	Tidal power plants, windmills, solar power plants	Lecture	
Day 3	Solar thermal and solar photovoltaic	Lecture	
Day 4	Direct energy conversion systems, Energy sources in India, Recent development in power plants	Lecture	Assignment 1
Day 5	Hydrology, rainfall and runoff	Lecture	
Day 6	Hydrographs and flow duration curves	Lecture	
Day 7	Site selection for hydro power plants and classification of hydro power plants	Lecture	
Day 8	Storage type hydro power plant and its operation, Estimation of power availability	Lecture	Assignment 2
Day 9	Selection of water turbines. combination of hydroplants with steam plants.	Lecture	
Day10	Advantages and disadvantages of hydropower plants	Lecture	
Day11	Applications of diesel engine in power field, Advantages and disadvantages of diesel plants over thermal power plants	Lecture	
Day12	Schematic arrangement of diesel engine power plant, Different systems of diesel power plants	Lecture	
Day13	Performance characteristics of supercharging, layout of diesel engine power plant	Lecture	
Day14	Gas turbine cycles, the ideal brayton cycle and the non ideal brayton cycle	Lecture	

Day15	Modification of the brayton cycle,	Lecture	
	Gas turbine characteristics		
Day16	Combined cycles with heat	Lecture	
	recovery boiler. The STAG		
	Combined cycle power plant		
Day17	Combined cycle with	Lecture	
5	multipresssure .Combined cycle for		
	nuclear power plants		
Dav18	The carnot. The ideal rankine cycle.	Lecture	Assignment 3
,	externally irreversible rankine cycle		
Dav19	Superheat Reheat Regeneration	Lecture	
Dujij	Internally irreversible rankine cycle	Looture	
Dav20	Open feed water heaters closed	Lecture	
Day20	type feed water heaters. Typical	Leeture	
	layout of steam power plant		
	efficiency and heat rate		
Dav21	Introduction to steam generators	Locturo	
Day21	Steam generator control Eluidized	Lecture	
	bed beilers		
Dev22	Modern high processing hoilers	Lastura	
Day22	super critical hailand with	Lecture	
	super critical bollers, ultra		
	supercritical technology, advanced		
	ultra super critical technology, flue		
	gas de nitrification and		
D 00	desulphurization	T /	
Day23	Fabric filters and bag houses, feed	Lecture	
	water treatment, boiler blow down,		
	steam purity	T	
Day24	Basic theory and terminology,	Lecture	
	Nuclear fission and fusion		
	processes	-	
Day25	Fission chain reactions,	Lecture	
	Moderation, Fertile materials		
Day26	Nuclear fuels, General components	Lecture	
	of nuclear reactor		
Day27	Different types of reactors	Lecture	Assignment 4
	PWR,BWR,GCR etc.		
Day28	India nuclear power programme,	Lecture	
	disposal of nuclear waste and		
	related issues		
Day29	Introduction to economics of power	Lecture	
	generation		
Day30	Different terms and definitions	Lecture	
Day31	Selection of power plant equipment	Lecture	
Day32	Factors affecting economics of	Lecture	
	generation and distribution of		
	power		
Day33	Performance and operating	Lecture	
	characteristics of power plants,		
	Economic load sharing		
Day34	Tariff for electrical energy	Lecture	
*			

Lesson Plan of Mechanical Engineering Deptt. 8th Semester

Subject : Quality Assurance & Reliability (ME-406N)

- 1. Students will understand the concepts of quality, quality assurance and management.
- 2. Students will be able to demonstrate the ability to use the methods of statistical process control and able to use and interpret control charts for variables.
- 3. Students will be able to use and interpret control charts for attributes, also able to understand sampling inspection.
- 4. Understand the concepts of reliability, carry out reliability data analysis, Get acquainted with computation of system reliability and reliability improvement methods.

Day	Topic / Chapter Covered	Academic Activity	Test/Assignment
Day 1	Definition of Quality, Quality	Lecture	
	function		
Day 2	Dimensions of Quality, Brief	Lecture	
	history of quality methodology		
Day 3	Statistical methods for quality	Lecture	
	improvements		
Day 4	Quality costs, Introduction to	Lecture	Assignment 1
	Quality function deployment.		
Day 5	Introduction, Definition,	Lecture	
	Management principles in QA		
Day 6	Forms of QA, QA in different stage	Lecture	
Day 7	Quality planning, QA program	Lecture	
Day 8	Quality in material management,	Lecture	Assignment 2
	Vendor selection & development		
Day 9	Introduction to statistical process	Lecture	
	control, Concept of variation		
Day10	Assignable & Chance causes,	Lecture	
	Attributes & variables		
Day11	Attributes & variables, Frequency	Lecture	
	distribution curve & its types		
Day12	Problems on FD curve & ND curve	Lecture	
Day13	Definition, Formulae	Lecture	Assignment 3
Day14	its problems	Lecture	
Day15	Control chart patterns	Lecture	
Day16	Process capability	Lecture	
Day17	Process capability	Lecture	
Day18	Process capability Process	Lecture	Assignment 4
	capability		
Day19	Definition for control chart for	Lecture	
	attributes		
Day20	Formulae & its problems	Lecture	
Day21	Problems on p, c charts.	Lecture	
Day22	Choice between variables and	Lecture	
	attributes control charts		
Day23	Guidelines for implementing	Lecture	Assignment 5
	control charts.		

Day24	Sampling: Definition, types of	Lecture	
	sampling		
Day25	importance, benefits and limitations	Lecture	
	of sampling		
Day26	Average Outgoing Quality Curve	Lecture	
Day27	Operating Characteristic Curve	Lecture	Assignment 6
Day28	Errors in Making Inferences from	Lecture	
	Control Charts (Type I and II		
	errors).		
Day29	Introduction of Reliability concepts	Lecture	Assignment 7
Day30	Failure density, Probability of	Lecture	
	failure, ,		
Day31	Reliability of series and parallel	Lecture	
	connected systems and examples,		
	Logic diagrams,		
Day32	Improvement of system reliability,	Lecture	
	Element		
Day33	Redundancy,	Lecture	
Day34	Unit redundancy, Standby	Lecture	
	redundancy		
Day35	Unit redundancy, Standby	Lecture	Assignment 8
	redundancy		
Day36	Mortality rate, Mean time to failure	Lecture	
Day37	Unit redundancy, Standby	Lecture	
	redundancy		