Lesson Plan of Mechanical Engineering Deptt. 6th Semester

Subject : Organizational Behaviour (HM-901A)

- 1. An overview about organizational behavior as a discipline and understanding the concept of individual behavior.
- 2. Understand the concept and importance of personality, emotions and its importance in decision making and effective leadership.
- 3. Enabling the students to know about the importance of effective motivation and its contribution in group dynamics and resolving conflicts.
- 4. Understand how to overcome organizational stress by maintaining proper organizational culture and effective communication

Day	Topic / Chapter Covered	Academic Activity	Test/Assignment
Day 1	Introduction to organizational	Lecture	
	behavior: Concept and importance		
	of organizational behavior		
Day 2	Role of Managers in OB	Lecture	
Day 3	Foundations or approaches to	Lecture	
	organizational behaviour		
Day 4	Challenges and opportunities for	Lecture	
	OB.		
Day 5	Foundation of individual behavior:	Lecture	
	Biographical characteristics		
Day 6	Concept of abilities and learning	Lecture	
Day 7	Learning and learning cycle	Lecture	
Day 8	Components of learning	Lecture	Assignment 1
Day 9	Concept of values and attitude,	Lecture	
	types of attitude		
Day10	Attitude and workforce diversity.	Lecture	
Day11	Introduction to personality and	Lecture	
	emotions: Definition and Meaning		
	of Personality		
Day12	Determinants of Personality	Lecture	
Day13	Personality Traits Influencing OB	Lecture	
Day14	Nature and Meaning of Emotions	Lecture	
Day15	Emotions dimensions	Lecture	
Day16	Concept of Emotional intelligence.	Lecture	
Day17	Perception and individual decision	Lecture	
-	making: meaning of perception		
Day18	Factors influencing perception	Lecture	Assignment 2
Day19	Rational decision making process	Lecture	
Day20	Concept of bounded rationality	Lecture	
Day21	Leadership-trait approaches	Lecture	
Day22	Behavioural approaches, situational	Lecture	
2	approaches		
Day23	Emerging approaches to leadership.	Lecture	
Day24	Motivation: Concept and theories	Lecture	

	of motivation		
Day25	Theories of motivation-Maslow, two factor theory	Lecture	
Day26	Theory X and Y	Lecture	
Day27	ERG Theory	Lecture	Assignment 3
Day28	McClelland's theory of needs	Lecture	C
Day29	Goal setting theory	Lecture	
Day30	Application of theories in organizational scenario	Lecture	
Day31	Linkage between MBO and goal setting theory	Lecture	
Day32	Employee recognition and involvement program	Lecture	
Day33	Foundations of group behavior and conflict management: Defining and classifying of groups	Lecture	
Day34	Stages of group development, Informal and formal groups- group dynamics	Lecture	
Day35	Managing conflict and negotiation, a contemporary perspective of intergroup conflict	Lecture	Assignment 4
Day36	Causes of group conflicts, managing intergroup conflict through resolution	Lecture	
Day37	Introduction to Organizational Communication: Meaning and importance of communication process	Lecture	
Day38	Importanceoforganizationalcommunication,effectivecommunication	Lecture	
Day39	Organizational stress: definition and meaning sources and types of stress	Lecture	
Day40	Impact of stress on organizations, stress management techniques.	Lecture	
Day41	Introduction to Organization Culture: Meaning and nature of organization culture	Lecture	
Day42	Types of culture, managing cultural diversity	Lecture	
Day43	Managing change and innovation- change at work, resistance to change	Lecture	Assignment 5
Day44	A model for managing organizational change	Lecture	

Lesson Plan of Mechanical Engineering Deptt. 6th Semester

Subject : Manufacturing Technology (MEC-302A)

- 1. Students will be able to explain the fundamentals of casting processes and evaluate design parameters.
- 2. Students will be able to describe different metal forming processes and analysis.
- 3. Students will be able to explain different welding processes with their applications.
- 4. Students will be able to evaluate design parameters of powder metallurgy processes and explain different powder metallurgy and plastic shaping processes.

Day	Topic / Chapter Covered	Academic Activity	Test/Assignment
Day 1	Fundamentals of castings:	Lecture	
	Introduction to casting: basic		
D 4	requirements of casting processes	.	
Day 2	Casting terminology	Lecture	
Day 3	Solidification process: cooling	Lecture	
	curves, prediction of solidification time		
Day 4	The cast structure, molten metal	Lecture	Assignment 1
Duy 4	problems	Lecture	Assignment 1
Day 5	Fluidity and pouring temperature,	Lecture	
	role of gating system, solidification		
	shrinkage		
Day 6	Riser and riser design, risering aids	Lecture	
Day 7	Patterns, design considerations in	Lecture	
	castings		
Day 8	Expandable-mold casting	Lecture	Assignment 2
	processes: Sand casting, cores and		
Day 9	core makingOther expendable-mold processes	Lecture	
Day 9	with multiple use patterns	Lecture	
Day10	Expendable-mold processes with	Lecture	
Duj10	multiple use patterns		
Day11	Shakeout, cleaning and finishing	Lecture	
Day12	Multiple-use-mold casting	Lecture	
-	processes: Permanent mold casting,		
	die casting		
Day13	Squeeze casting and semisolid	Lecture	Assignment 3
	metal casting		
Day14	Centrifugal casting, cleaning	Lecture	
	treating and heat treating of		
D 15	castings	T /	
Day15	Automation in foundry operations	Lecture	
Day16	Metal forming processes:	Lecture	
	classifications of metal forming processes		
Day17	Bulk deformation processes,	Lecture	
Day17 Day18	Material behavior in metal forming,	Lecture	Assignment 4
Duyio	material benavior in metal forming,	Lecture	

	temperature in metal forming		
Day19	Rolling: flat rolling and its analysis,	Lecture	
Dujij	shape rolling, rolling mills	Leeture	
Day20	Forging: open-die forging,	Lecture	
Duy20	impression-die forging, flashless	Lecture	
	forging		
Day21	Forging hammers, presses, and dies	Lecture	
Day22	Extrusion: types of extrusion,	Lecture	
	analysis of extrusion, extrusion dies		
D02	and presses	T farme	A
Day23	Defects in extruded products, wire	Lecture	Assignment 5
D 04	and bar drawing	τ	
Day24	Analysis of drawing, drawing	Lecture	
	practice, tube drawing		
Day25	Sheet metal working: Cutting	Lecture	
	operations: shearing, blanking, and		
	punching		
Day26	Engineering analysis of sheet-metal	Lecture	
	cutting, other sheet-metal-cutting		
	operations		
Day27	Bending operations: v-bending and	Lecture	Assignment 6
	edge bending, engineering analysis		
	of bending		
Day28	Drawing: mechanics of drawing,	Lecture	
·	engineering analysis of drawing,		
	defects in drawing.		
Day29	Joining processes: Principles of	Lecture	Assignment 7
·	fusion welding processes		C
Day30	Arc welding processes-consumable	Lecture	
2	electrodes		
Day31	Shielded metal arc welding, gas	Lecture	
2 4 9 0 1	metal arc weldingFlux-cored arc	200000	
	welding, submerged arc welding		
Day32	Arc welding processes-non-	Lecture	
Duy52	consumable electrodes: gas	Lecture	
	tungsten arc welding		
Day33	Plasma arc welding, resistance	Lecture	
Dayss	welding processes	Lecture	
Day34	Other fusion-welding processes:	Lecture	
Day54	electron-beam welding	Lecture	
Dav25	<u> </u>	Lastura	A agi an mant 9
Day35	Laser-beam welding, electro-slag	Lecture	Assignment 8
D26	welding, thermit welding.	T farme	
Day36	Principles of solid state welding	Lecture	
	processes: friction welding,		
D 07	explosive welding	T.	
Day37	Ultrasonic welding processes	Lecture	
Day38	Brazing, soldering, and adhesive	Lecture	
	bonding: Principles of adhesive,		
	brazing and soldering processes		
Day39	Origins of welding defects.	Lecture	
Day40	Powder metallurgy:	Lecture	
	Characterization of engineering		
	powders: geometric features		

Day41	Other features production of metallic powders: atomization: other production methods	Lecture	
Day42	Conventional pressing and sintering: blending and mixing of the powders	Lecture	
Day43	Compaction, sintering, heat treatment and finishing	Lecture	
Day44	Design considerations in powder metallurgy.	Lecture	
Day45	Shaping processes for plastics: Properties of polymer melts, extrusion	Lecture	
Day46	Production of sheet and film, fiber and filament production (spinning)	Lecture	Assignment 9
Day47	Coating processes, injection molding, compression and transfer molding	Lecture	
Day48	Blow molding and rotational molding, thermoforming	Lecture	

(Sign. of HOD)

(Sign. of Teacher Concerned with date)

Lesson Plan of Mechanical Engineering Deptt. 6th Semester

Subject : Design of Machine Elements (MEC-304A)

- 1. Students will be able to explain the design procedures and methods, properties of engineering materials and their selection, design against static and fluctuating loads.
- 2. Students will be able to solve the design problems of different types of joints i.e. bolted, riveted joint and welded joint and the problems related to the design of springs under different loading conditions.
- 3. Students will be able to analyse the transmission shafts and keys.
- 4. Students will be able to solve the design problems related to clutches and brakes and selection of bearings from manufacturer's catalogue.

Day	Topic / Chapter Covered	Academic Activity	Test/Assignment
Day 1	Introduction: Basic procedure of	Lecture	
	the design of machine elements,		
	standards in machine design		
Day 2	Selection of preferred sizes,	Lecture	
	engineering materials, properties		
	and selection	T	
Day 3	BIS system of designation of steels.	Lecture	A •
Day 4	Design against static load: Modes of failure, factor of safety	Lecture	Assignment 1
Day 5	Stress concentration: causes and mitigation	Lecture	
Day 6	Design against fluctuating load: Fluctuating stresses, endurance limit	Lecture	
Day 7	Low cycle and high cycle fatigue, notch sensitivity	Lecture	
Day 8	Endurance limit-approximate estimation, reversed stresses- design for finite and infinite life	Lecture	
Day 9	Cumulative damage in fatigue	Lecture	
Day10	Soderberg and Goodman lines, Modified Goodman diagrams.	Lecture	
Day11	Bolted, riveted and welded Joints: Bolt of uniform strength, bolted joint- simple analysis	Lecture	
Day12	Eccentrically loaded bolted joints, riveted joints for boiler shell according to I. B. R.	Lecture	
Day13	Riveted structural joint, eccentrically loaded riveted joint	Lecture	Assignment 2
Day14	Types of welded joints, strength of welds under axial load	Lecture	
Day15	Welds under eccentric loading.	Lecture	
Day16	Springs: Types of spring, helical spring terminology	Lecture	

Day17	Design for helical springs, spring design-trial and error method	Lecture	
Day18	Design against fluctuating load, surge in springs	Lecture	
Day19	Design of leaf springs, rubber springs.	Lecture	
Day20	Transmission shafts: Shaft design on strength basis and torsional rigidity basis	Lecture	
Day21	ASME code for shaft design	Lecture	
Day22	Design of hollow shaft on strength basis and torsional rigidity basis	Lecture	
Day23	Keys: types of keys	Lecture	Assignment 3
Day24	Design of square and flat keys.	Lecture	
Day25	Clutches: Various types of clutches, design of friction clutches-single disc	Lecture	
Day26	Multi-disc, cone and centrifugal clutches, torque transmitting capacity	Lecture	
Day27	Friction materials, thermal considerations.	Lecture	
Day28	Brakes: Energy equations, block brake with short shoe, block brake with long shoe	Lecture	
Day29	Internal expanding brake, band brakes, disc brakes, thermal considerations.	Lecture	
Day30	Rolling contact bearings: Types of rolling contact bearing	Lecture	
Day31	Selection of bearing-type, static and dynamic load carrying capacity	Lecture	
Day32	Equivalent bearing load	Lecture	
Day33	load-life relationship	Lecture	
Day34	Selection of bearings from manufacturer's catalogue	Lecture	
Day35	Selection of taper roller bearing, design for cyclic loads and speeds	Lecture	Assignment 4
Day36	Bearing failure-causes and analysis.	Lecture	
Day37	Sliding contact bearings: Basic modes of lubrication	Lecture	
Day38	Raimondi and Boyd method	Lecture	
Day39	Bearing design-selection of parameters, bearing materials	Lecture	
Day40	Bearings failure-causes and remidies	Lecture	

Lesson Plan of Mechanical Engineering Deptt. 6th Semester

Subject : Internal Combustion Engine (MEP-302A)

- 1. Student will be able to describe the basic concepts of Internal and External combustion engines and different air standard cycles.
- 2. Students will be able to explain different types of injection systems, lubrication systems, carburetor; detonation, C.I. combustion chambers and their applications.
- 3. Students will be able to determine the performance parameters of S.I. and C.I. engines.
- 4. Students will be able to explain the basic concepts of reciprocating air compressors and gas turbine along with exhaust gas heat exchanger.

Day	Topic / Chapter Covered	Academic Activity	Test/Assignment
Day 1	Heat engines; Internal and external	Lecture	
	combustion engines		
Day 2	Classification of I.C. Engines	Lecture	
Day 3	Cycle of operations in four strokes	Lecture	
	and two-stroke IC engines		
Day 4	Wankle Engine.	Lecture	Assignment 1
Day 5	Air standard cycles: Assumptions	Lecture	
-	made in air standard cycles		
Day 6	Otto cycle; Diesel cycle; Dual	Lecture	
-	combustion cycle		
Day 7	Comparison of Otto, diesel and	Lecture	
	dual combustion cycles		
Day 8	Sterling and Ericsson cycles, Air	Lecture	Assignment 2
	standard efficiency, Specific work		
	output		
Day 9	Specific weight; Work ratio; Mean	Lecture	
-	effective pressure		
Day10	Deviation of actual engine cycle	Lecture	
	from ideal cycle.		
Day11	Carburetor and Injection systems:	Lecture	
	Mixture requirements for various		
	operating conditions in S.I. Engines		
Day12	Elementary carburetor, Calculation	Lecture	
	of fuel air ratio		
Day13	The complete carburetor,	Lecture	
	Requirements of a diesel injection		
	system		
Day14	Type of injection system	Lecture	
Day15	Petrol injection; Requirements of	Lecture	
	ignition system		
Day16	Types of ignition systems, ignition	Lecture	
-	timing, Spark plugs		
Day17	Engine parameters and knocking:	Lecture	
-	S.I. engines		
Day18	Ignition limits; Stages of	Lecture	Assignment 3

	combustion in S. I. Engines		
Day19	Ignition lag; Velocity of flame	Lecture	
Day19	propagation	Lecture	
Day20		Lecture	
Day20	e e	Lecture	
D 01	variables on detonation	T (
Day21	Theories of detonation; Octane	Lecture	
	rating of fuels		
Day22	Pre-ignition; S.I. engine	Lecture	
	combustion chambers		
Day23	Stages of combustion in C.I.	Lecture	
	Engines; Delay period		
Day24	Variables affecting delay period;	Lecture	
2	Knock in C.I. Engines; Cetane		
	rating		
Day25	C.I. Engine combustion chambers	Lecture	
Day25 Day26		Lecture	
Day20	Lubrication and cooling systems:	Lecture	
D 07	Functions of a lubricating system	T /	
Day27	Types of lubrication system; Mist,	Lecture	Assignment 4
	Wet sump and dry sump systems		
Day28	Properties of lubricating oil; SAE	Lecture	
	rating of lubricants		
Day29	Engine performance and	Lecture	
-	lubrication; Necessity of engine		
	cooling		
Day30	Disadvantages of overcooling	Lecture	
Day31	Cooling systems; Air-cooling,	Lecture	
Duysi	Water-cooling; Radiators	Leeture	
Day32	Heat balance and emission control:	Lecture	
Day52		Lecture	
D22	Performance parameters	T	
Day33	BHP, IHP, Mechanical efficiency	Lecture	
Day34	Brake mean effective pressure and	Lecture	
	indicative mean effective pressure		
Day35	Torque, Volumetric efficiency	Lecture	Assignment 5
Day36	Specific fuel consumption (BSFC,	Lecture	
	ISFC), Thermal efficiency; Heat		
	balance		
Day37	Basic engine measurements; Fuel	Lecture	
5	and air consumption		
Day38	Brake power, Indicated power and	Lecture	
24,000	friction power, Heat lost to coolant	2000000	
	and exhaust gases; Performance		
	curves		
Dev20		Lastura	
Day39		Lecture	
D 10	Engines	.	
Day40	Methods of emission control,	Lecture	
	Alternative fuels for I.C. Engines,		
	The current scenario on the		
	pollution front.		
Day41	Air compressor: Working of a	Lecture	
-	single stage reciprocating air		
	single stage recipioeating an		
	compressor; Calculation of work input		

			1
	efficiency; Advantages of multi		
	stage compression		
Day43	Two stage compressor with inter-	Lecture	
	cooling; Perfect inter cooling		
David	<u> </u>	Lastura	A agignment 6
Day44	Optimum intercooler pressure;	Lecture	Assignment 6
	Rotary air compressors and their		
	applications; Isentropic efficiency.		
Day45	Gas turbine: Brayton cycle;	Lecture	
5	Components of a gas turbine plant,		
	Open and closed types of gas		
	turbine plants; Optimum pressure		
	ratio		
Day46	Improvements of the basic gas	Lecture	
	turbine cycle; Multi stage		
	compression with inter-cooling		
Derr47	· · · · · · · · · · · · · · · · · · ·	Lastra	
Day47	Multi stage expansion with	Lecture	
	reheating between stages		
Day48	Exhaust gas heat exchanger;	Lecture	
	Application of gas turbines		
L			

(Sign. of HOD)

(Sign. of Teacher Concerned with date)

Lesson Plan of Mechanical Engineering Deptt. 6th Semester

Subject : Refrigeration & Air Conditioning (MEP-310A)

- 1. Students will be able to explain different refrigeration processes like ice refrigeration, evaporative refrigeration, refrigeration by expansion of air, steam jet refrigeration systems etc.
- 2. Students will be able to identify, formulate and solve air refrigeration, vapour refrigeration and vapour absorption refrigeration problems.
- 3. Students will be able to identify different refrigerants and discuss their uses.
- 4. Students will be able to describe psychrometric properties, psychrometric chart and its use for different cooling and heating processes along with humidification and dehumidification.
- 5. Students will be able to design various air-conditioning systems by including the internal and external heat gain.

Day	Topic / Chapter Covered	Academic Activity	Test/Assignment
Day 1	Introduction: Basics of heat pump & refrigerator, Carnot refrigeration and heat pump	Lecture	
Day 2	Units of refrigeration, COP of refrigerator and heat pump, Carnot COP	Lecture	
Day 3	Ice refrigeration, evaporative refrigeration, refrigeration by expansion of air, refrigeration by throttling of gas	Lecture	
Day 4	Vapour refrigeration system, steam jet refrigeration	Lecture	Assignment 1
Day 5	Thermo- electric cooling, adiabatic demagnetization.	Lecture	
Day 6	Air refrigeration: Basic principle of operation of air refrigeration system	Lecture	
Day 7	Bell Coleman air refrigerator, advantages of using air refrigeration in air craft, disadvantage of air refrigeration in comparison to other cold producing methods	Lecture	
Day 8	Simple air refrigeration in air craft, simple evaporative type	Lecture	Assignment 2
Day 9	Air refrigeration in air craft, necessity of cooling the aircraft.	Lecture	
Day10	Simple vapour compression refrigeration system: Simple vapour compression refrigeration system	Lecture	
Day11	Different compression processes	Lecture	

	(wet, dry and saturated Compression, superheated compression)		
Day12	Limitations of vapour compression refrigeration system if used on reverse Carnot cycle	Lecture	
Day13	Representation of theoretical and actual cycle on T-S and P-H charts, effects of operating conditions on the performance of the system	Lecture	
Day14	Advantages of vapour compression system over air refrigeration system	Lecture	
Day15	Advanced vapour compression refrigeration system: Methods of improving COP	Lecture	
Day16	Flash chamber, flash inter cooler, optimum inter stage pressure for two stage refrigeration system	Lecture	
Day17	Single expansion and multi expansion cases	Lecture	
Day18	Basic introduction of single load and multi load systems, cascade systems	Lecture	Assignment 3
Day19	Vapour absorption refrigeration system and special topics: Basic absorption system	Lecture	
Day20	COP and maximum COP of the absorption system	Lecture	
Day21	Actual NH ₃ absorption system, function of various components, Li- Br absorption system	Lecture	
Day22	Selection of refrigerant and absorbent pair in vapour absorption system, Electro-Lux refrigerator	Lecture	
Day23	Comparison of compression and absorption refrigeration system	Lecture	
Day24	Nomenclature of refrigerants, desirable properties of refrigerants	Lecture	
Day25	Cold storage and Ice Plants.	Lecture	
Day26	Introduction: Difference between refrigeration and Air-conditioning	Lecture	
Day27	Psychrometric properties of moist air (wet bulb, dry bulb, dew point temperature, relative and specific humidity, temperature of adiabatic saturation)	Lecture	Assignment 4
Day28	Empirical relation to calculate P_v of moist air.	Lecture	
Day29	Psychrometry: Psychrometric chart, construction and use	Lecture	

Day30	Mixing of two air streams, sensible heating and cooling	Lecture	
Day31	Latent heating and cooling, humidification and dehumidification	Lecture	
Day32	Cooling with dehumidification, cooling with adiabatic humidification	Lecture	
Day33	Heating and humidification, By- pass factor of coil, sensible heat factor	Lecture	
Day34	ADP of cooling coil, Air washer.	Lecture	
Day35	Air-conditioningSystems:Classification, factors affecting air- conditioning systems	Lecture	Assignment 5
Day36	Comfort air-conditioning system, winter air-conditioning system, summer air-conditioning system	Lecture	
Day37	Year round air-conditioning system, unitary air-conditioning system	Lecture	
Day38	Central air-conditioning system, Room sensible heat factor	Lecture	
Day39	Grand sensible heat factor, effective room sensible heat factor	Lecture	
Day40	Cooling Load calculation: Inside design conditions, comfort conditions	Lecture	
Day41	Components of cooling load, internal heat gains (occupancy, lighting, appliances, product and processes)	Lecture	
Day42	System heat gain (supply air duct, A.C. fan, return air duct)	Lecture	
Day43	External heat gain (heat gain through building, solar heat gain through outside walls and roofs)	Lecture	
Day44	Sol-air temperature, solar heat gain through glass windows	Lecture	Assignment 6
Day45	Heat gain due to ventilation and infiltration.	Lecture	
Day46	IndustrialandCommercialApplication:Transportairconditioning	Lecture	
Day47	Evaporative condensers	Lecture	
Day48	Cooling towers, heat pumps	Lecture	