Lesson Plan of Mechanical Engineering Deptt. 4th Semester

Subject : Materials Engineering (ES-204A)

- 1. To understand the Crystal structures and deformation mechanism in various materials.
- 2. To study various types of phase diagrams, TTT curve and Iron carbon diagram. To learn about different heat treatment processes.
- 3. To learn about the failure mechanisms like Creep and Fatigue and designation of materials.
- 4. To study Basics of Metallography and Basic Principle involved in the working of various types of Material characterization techniques.

Day	Topic / Chapter Covered	Academic Activity	Test/Assignment
Day 1	Crystallography: Review of Crystal	Lecture	
	Structure		
Day 2	Space Lattice, Co-ordination	Lecture	
	Number		
Day 3	Number of Atomsper Unit Cell,	Lecture	
	Atomic Packing Factor		
Day 4	Numerical Problems Related to	Lecture	
	Crystallography		
Day 5	Imperfection in Metal Crystals:	Lecture	
	Crystal Imperfections and their		
	Classifications		
Day 6	Point Defects, Line Defects, Edge	Lecture	
	& Screw Dislocations		
Day 7	Surface Defects, Volume Defects	Lecture	
Day 8	Introduction to Engineering	Lecture	Assignment 1
	materials and Standard Materials		
	Designation: Introduction to		
	Engineering materials		
Day 9	Steel Terminology, Standard	Lecture	
	Designation System for Steels		
Day10	Indian Standard specifications for	Lecture	
	steels as per BIS: Based on		
	Ultimate Tensile Strength and		
	based on Composition		
Day11	AISI-SAE standard designation for	Lecture	
	Steels and Aluminium Alloys		
Day12	Phase Diagrams: Alloy Systems,	Lecture	
	Solid solutions		
Day13	Hume Rothery's Rules	Lecture	
Day14	Intermediate phases, Phase	Lecture	
	Diagrams		
Day15	Gibbs Phase Rule, Cooling curves	Lecture	
Day16	The Lever Rule, binary phase	Lecture	
	diagrams		
Day17	Applications of Phase Diagrams,	Lecture	
	Phase Transformation		

Day18	Micro constituents of Fe-C system	Lecture	Assignment 2
Day19	Allotropic Forms of Iron ,Iron-iron	Lecture	
	carbide phase diagram		
Day20	Modified Iron Carbon Phase	Lecture	
	Diagrams, Isothermal		
	Transformation, TTT Curve,		
Day21	Heat Treatment: Heat treatment of	Lecture	
	steels		
Day22	Annealing, Normalising	Lecture	
Day23	Hardening, Tempering, Case	Lecture	
	Hardening		
Day24	Ageing, Aus tempering and Mar	Lecture	
	tempering, Surface Hardening,		
	Mass Effect		
Day25	Equipments for Heat Treatment	Lecture	
Day26	Major Defects in Metals or Alloys	Lecture	
	due to faulty Heat treatment.		
Day27	Deformation of Metal: Elastic and	Lecture	Assignment 3
	Plastic Deformation		
Day28	Mechanism of Plastic Deformation,	Lecture	
	Slip		
Day29	Critical Resolved Shear Stress,	Lecture	
	Twinning		
Day30	Conventional and True Stress	Lecture	
	Strain Curves for Polycrystalline		
	Materials	-	
Day31	Yield Point Phenomena,	Lecture	
	Bauschinger Effect, Work		
D 22	Hardening	T 4	
Day32	Failure of Materials: Fatigue,	Lecture	
D 22	Fatigue fracture, fatigue failure	T 4	
Day33	Mechanismot Fatigue Failure,	Lecture	
Der 24	Fatigue Life calculations	Lastaria	
Day34	Fatigue Tests, Theories of Fatigue	Lecture	A animum and A
Day35	Creep: Creep Curve	Lecture	Assignment 4
Day36	Types of Creep, Factors affecting	Lecture	
D27	Creep	T t	
Days/	Mechanism of Creep, Creep	Lecture	
Dov/29	Croop Erecture Croop Test	Lastura	
Day38	Strong Pupture test	Lecture	
Day 39	Suess Rupture test	Lecture	
Day40	Metallography Dhase analysis	Lecture	
Dav/1	Metallography, Phase analysis	Lastura	
Day41	defects Corresion analysis	Lecture	
Dov/12	Intergrapular attack (ICA) Coating	Looturo	
Day42	thickness and integrity	Lecture	
Dov/2	Inclusion size change and	Looturo	Accionment 5
Day43	distribution Wold and best affected	Lecture	Assignment 3
	$\frac{1}{2000}$ $\frac{1}{1000}$ $\frac{1}{1000}$ $\frac{1}{1000}$ $\frac{1}{10000}$ $\frac{1}{10000000000000000000000000000000000$		
Dav/1/	Distribution and orientation of	Lecture	
Day	composite fillers Graphite	Lecture	
	nodularity. Intergranular fracturing		
			1

Day45	MaterialsCharacterizationTechniques:CharacterizationtechniquessuchasX-RayDiffraction (XRD)	Lecture	
Day46	Scanning Electron Microscopy, transmission electron microscopy	Lecture	
Day47	Atomic force microscopy, scanning tunneling microscopy	Lecture	
Day48	Atomic absorption spectroscopy	Lecture	

Lesson Plan of Mechanical Engineering Deptt. 4th Semester

Subject : Applied Thermodynamics (MEC-202A)

- 1. Understand the working of boilers, types of boilers, accessories and mountings used on boilers.
- 2. Learn about simple and modified Rankine cycles.
- 3. Understand the design and analysis of steam flow through steam nozzles. To learn about the working of different types of condensers.
- 4. Analyze the working and design of the steam turbine and apply the knowledge in solving the engineering problems of turbines.

Day	Topic / Chapter Covered	Academic Activity	Test/Assignment
Day 1	Steam Generators: Introduction; classification of boilers	Lecture	
Day 2	Comparison of fire tube and water tube boiler; their advantages	Lecture	
Day 3	Description of boiler; Lancashire	Lecture	
Day 4	Locomotive; Babcock; Wilcox etc.	Lecture	Assignment 1
Day 5	Boiler mountings; stop valve; safety valve	Lecture	
Day 6	Blow off valve; feed check etc.	Lecture	
Day 7	Water level indicator; fusible plug	Lecture	
Day 8	Pressure gauge	Lecture	Assignment 2
Day 9	Boiler accessories; feed pump	Lecture	
Day10	Feed water heater; preheater	Lecture	
Day11	Super heater; economizer; natural draught chimney design	Lecture	
Day12	Artificial draught; stream jet	Lecture	
Dav13	Mechanical draught	Lecture	Assignment 3
Day13	Calculation of boiler efficiency and	Lecture	
2.491.	equivalent evaporation.		
Day15	Vapour Power Cycles: Simple and modified Rankine cycle	Lecture	
Day16	Effect of operating parameters on Rankine cycle performance	Lecture	
Day17	Effect of superheating; effect of maximum pressure	Lecture	
Day18	Effect of exhaust pressure; reheating and regenerative Rankine cycle	Lecture	Assignment 4
Day19	Types of feed water heater; reheat factor; binary vapour cycle	Lecture	
Day20	Simple steam engine, compound engine; function of various components.	Lecture	
Day21	Steam Nozzle: Function of steam nozzle	Lecture	

Day22	Shape of nozzle for subsonic and	Lecture	
	supersonics flow of stream		
Day23	Variation of velocity; area of specific volume	Lecture	Assignment 5
Dav24	Steady state energy equation:	Lecture	
Duy2+	continuity equation	Lecture	
Dav25	Nozzle efficiency: critical pressure	Lecture	
Duy25	ratio for maximum discharge	Lecture	
Dav26	Physical explanation of critical	Lecture	
Day20	pressure: super saturated flow of	Lecture	
	steam		
Dav27	Design of steam nozzle	Lecture	Assignment 6
Day27	Advantage of steam condensation:	Lecture	
Day20	component of steam condensing	Lecture	
	nlant		
Dav29	Types of condensers: air leakage in	Lecture	Assignment 7
Duj2	condensers	Locture	rissignment /
Day30	Dalton's law of partial pressure;	Lecture	
	vacuum efficiency		
Day31	Calculation of cooling water	Lecture	
-	requirement; air expansion pump.		
Day32	Steam Turbines: Introduction;	Lecture	
	classification of steam turbine		
Day33	Impulse turbine; working principle;	Lecture	
	compounding of impulse turbine;		
	velocity diagram		
Day34	Calculation of power output and	Lecture	
	efficiency		
Day35	Maximum efficiency of a single	Lecture	Assignment 8
	stage impulse turbine		
Day36	Design of impulse turbine blade	Lecture	
	section; impulse		
Day37	Reaction turbine; working principle	Lecture	
Day38	Degree of reaction; parsons turbine;	Lecture	
	velocity diagram		
Day39	Calculation of power output;	Lecture	
	efficiency of blade height		
Day40	Condition of maximum efficiency	Lecture	
Day41	Internal losses in steam turbine	Lecture	
Dav42	Governing of steam turbine	Lecture	

Lesson Plan of Mechanical Engineering Deptt. 4th Semester

Subject : Fluid Mechanics & Fluid Machines (MEC-204A)

- 1. Upon completion of this course, students will be able to apply mass and momentum conservation laws to mathematically analyze simple flow situations.
- 2. The students will be able to obtain solution for boundary layer flows using exact or approximate methods.
- 3. The students will be able to estimate the major and minor losses through pipes and learn to draw the hydraulic gradient and total energy lines.
- 4. The students will be able to obtain the velocity and pressure variations in various types of simple flows.
- 5. They will be able to analyze the flow and evaluate the performance of pumps and turbines.

Day	Topic / Chapter Covered	Academic Activity	Test/Assignment
Day 1	Fluid Properties: Definition of fluid	Lecture	
Day 2	Newton's law of viscosity	Lecture	
Day 3	Units and dimensions-Properties of	Lecture	
	fluids, mass density, weight density		
Day 4	Specific volume, specific gravity, viscosity	Lecture	Assignment 1
Day 5	Compressibility, surface tension and capillarity	Lecture	
Day 6	Fluid Kinematics: Types of fluid flows	Lecture	
Day 7	Stream, streak and path lines; flow rate and continuity equation	Lecture	
Day 8	Differential equation of continuity in cartesian and polar coordinates	Lecture	
Day 9	Rotation and vorticity, circulation	Lecture	
Day10	Stream and potential functions, flow net. Problems.	Lecture	
Day11	Fluid Dynamics: Concept of system and control volume	Lecture	
Day12	Euler's equation, Navier-Stokes equation	Lecture	
Day13	Bernoulli's equation and its practical applications	Lecture	Assignment 2
Day14	Impulse momentum equation. Problems.	Lecture	
Day15	Viscous Flow: Flow regimes and Reynold's number	Lecture	
Day16	Relationship between shear stress and pressure gradient	Lecture	
Day17	Exact flow solutions, Couette and Poisuielle flow	Lecture	
Day18	Laminar flow through circular conduits. Problems.	Lecture	

Day19	Turbulent Flow Through Pipes: Darcy Weisbach equation, friction factor	Lecture	
Day20	Moody's diagram, minor losses in pipes	Lecture	
Day21	Hydraulic gradient and total energy lines, series and parallel connection of pipes	Lecture	
Day22	Branched pipes; equivalent pipe, power transmission through pipes. Problems.	Lecture	
Day23	Boundary Layer Flow: Concept of boundary layer, measures of boundary layer thickness	Lecture	Assignment 3
Day24	Blasius solution, von-Karman momentum integral equation, laminar and turbulent boundary layer flows,	Lecture	
Day25	Separation of boundary layer and its control. Problems.	Lecture	
Day26	Dimensional Analysis: Need for dimensional analysis – methods of dimension analysis	Lecture	
Day27	Dimensionless parameters – application of dimensionless parameters. Problems.	Lecture	
Day28	Hydraulic Pumps: Introduction, theory of Rotodynamic machines	Lecture	
Day29	Classification, various efficiencies	Lecture	
Day30	Velocity components at entry and exit of the rotor, velocity triangles	Lecture	
Day31	Centrifugal pumps, working principle, work done by the impeller, minimum starting speed	Lecture	
Day32	Performance curves, Cavitation in pumps	Lecture	
Day33	Reciprocating pumps, working principle	Lecture	
Day34	Indicator diagram	Lecture	
Day35	Effect of friction and acceleration, air vessels, Problems.	Lecture	Assignment 4
Day36	Hydraulic Turbines: Introduction	Lecture	
Day37	Classification of water turbines, heads and efficiencies, velocity triangles	Lecture	
Day38	Axial, radial and mixed flow turbines	Lecture	
Day39	Pelton wheel	Lecture	
Day40	Francis turbine and Kaplan turbines, working principles, work done	Lecture	
Day41	Design of turbines, draft tube and types	Lecture	

Day42	Specific speed, unit quantities	Lecture	
Day43	Performance curves for turbines	Lecture	Assignment 5
Day44	Governing of turbines. Problems	Lecture	

Lesson Plan of Mechanical Engineering Deptt. 4th Semester

Subject : Mechanics of Solids - II (MEC-206A)

- 1. Identify the basics concepts of strain energy and various theories of failures and solve the problems.
- 2. Differentiate different types of stresses induced in thin pressure vessel and solve the problems. Use of Lame's equation to calculate the stresses induced in thick pressure vessel.
- 3. Able to compute stresses in ring, disk and cylinder due to rotation. Classify the different types of spring and analyze the stresses produced due to loading.
- 4. Determine the stresses in crane hook, rings, chain link for different cross section and also the deflection of curved bars and rings. Analyze the stresses due to unsymmetrical bending and determine the position of shear centre of different section.

Day	Topic / Chapter Covered	Academic Activity	Test/Assignment
Day 1	Strain Energy & Impact Loading:	Lecture	
	Definitions		
Day 2	Expressions for strain energy stored	Lecture	
	in a body when load is applied (i)		
	gradually, (ii) suddenly and (iii)		
	with impact	_	
Day 3	Strain energy of beams in bending	Lecture	
Day 4	Beam deflections	Lecture	Assignment 1
Day 5	Strain energy of shafts in twisting	Lecture	
Day 6	Energy methods in determining spring deflection	Lecture	
Day 7	Castigliano's theorem	Lecture	
Day 8	Theories of Elastic Failures:	Lecture	Assignment 2
Duyo	Various theories of elastic failures	Lootare	
	with derivations		
Day 9	Graphical representations	Lecture	
Day10	Applications to problems of 2-	Lecture	
	dimensional stress system with		
	Combined direct loading and		
	bending		
Day11	Combined torsional	Lecture	
Day12	Direct loading	Lecture	
Day13	Thin Walled Vessels: Hoop &	Lecture	
	Longitudinal stresses		
Day14	Strains in cylindrical	Lecture	
Day15	Spherical vessels & their	Lecture	
	derivations under internal pressure		
Day16	Wire would cylinders	Lecture	
Day17	Thick Cylinders & Spheres:	Lecture	
	Derivation of Lame's equations		
Day18	Radial & hoop stresses and strains	Lecture	Assignment 3
	in thick		
Day19	Ccompound cylinders	Lecture	

Day20	Spherical shells subjected to internal fluid pressure only	Lecture	
Dav21	Hub shrunk on solid shaft	Lecture	
Dav22	Rotating Rims & Discs: Stresses in	Lecture	
,	uniform rotating rings & discs		
Day23	Rotating discs of uniform strength	Lecture	
Day24	Stresses in (I) rotating rims,	Lecture	
-	neglecting the effect of spokes, (ii)		
	rotating cylinders		
Day25	Hollow cylinders & solids cylinders	Lecture	
Day26	Springs: Stresses in closed coiled	Lecture	
	helical springs		
Day27	Stresses in open coiled helical	Lecture	Assignment 4
	springs subjected to axial loads and		
	twisting couples		
Day28	Leaf springs	Lecture	
Day29	Flat spiral springs	Lecture	
Day30	Concentric springs	Lecture	
Day31	Bending of Curved Bars : Stresses	Lecture	
	in bars of initial large radius of		
Dar/22	Curvature	Lesture	
Day52	Bars of initial small radius of	Lecture	
Dov22	Strasses in grane books	Locturo	
Day33	Bings of sizular & transzoidal	Lecture	
Day54	sections	Lecture	
Dav35	Deflection of curved bars & rings	Lecture	Assignment 5
Day36	Deflection of rings by Castigliano's	Lecture	Assignment 5
Day50	theorem	Lecture	
Dav37	Stresses in simple chain links	Lecture	
Dav38	Deflection of simple chain links	Lecture	
Dav39	Unsymmetrical Bending:	Lecture	
24909	Introduction to unsymmetrical		
	bending		
Day40	Stresses due to unsymmetrical	Lecture	
2	bending		
Day41	Deflection of beam due to	Lecture	
-	unsymmetrical bending		
Day42	Shear center for angle, channel, and	Lecture	
	I-sections		

Lesson Plan of Mechanical Engineering Deptt. 4th Semester

Subject : Instrumentation & Control (MEC-208A)

- 1. Students will have basic knowledge about measurement systems and their components.
- 2. Students will learn about various sensors used for measurement of mechanical quantities.
- 3. Students will have basic knowledge of process monitoring and control.

Day	Topic / Chapter Covered	Academic Activity	Test/Assignment
Day 1	Introduction, typical applications of	Lecture	
	instrument systems, functional		
	elements of a measurement system.		
Day 2	Classification of instruments,	Lecture	
	standards and calibration.		
Day 3	Static and dynamic characteristics	Lecture	
	of measurement systems.		
Day 4	Static and dynamic characteristics	Lecture	Assignment 1
	of measurement systems.		
Day 5	Statistical analysis of data and	Lecture	
_	measurement of uncertainty		
Day 6	Statistical analysis of data and	Lecture	
	measurement of uncertainty		
Day 7	Statistical analysis of data and	Lecture	
	measurement of uncertainty		
Day 8	Statistical analysis of data and	Lecture	Assignment 2
	measurement of uncertainty		
Day 9	Introduction and classification,	Lecture	
	transducer selection and		
	specifications,		
Day10	Primary sensing elements,	Lecture	
	resistance transducers,		
Day11	Variable inductance type	Lecture	
	transducers, capacitive transducers		
Day12	Piezo-electric transducers, strain	Lecture	
	gauges.		
Day13	Smart Sensors: Introduction,	Lecture	Assignment 3
	architecture of smart sensor, bio		
	sensor and physical sensor.		
Day14	Piezo-resistive pressure sensor,	Lecture	
	microelectronic sensor.		
Day15	Force and weight measurement	Lecture	
	system,		
Day16	Measurement of torque, shaft	Lecture	
	power		
Day17	Speed and velocity: electrical and	Lecture	
	contactless tachometers.		
Day18	Acceleration: vibrometers, seismic	Lecture	Assignment 4

	and piezo-electric accelerometer.		
Day19	Basic terms, Pressure: Liquid	Lecture	
	column manometers		
Day20	Elastic type pressure gauges,	Lecture	
	electrical types for pressure and		
	vacuum.		
Day21	Temperature measuring	Lecture	
	instruments: RTD sensors, NTC		
Day22	thermistor, thermocouples	Lecture	
Day23	Semiconductor based sensors.	Lecture	Assignment 5
Day24	Flow Measurement: drag force flow	Lecture	
-	meter, turbine flow meter,		
	electronic flow meter,		
	electromagnetic flow meter, hot-		
	wire anemometer.		
Day25	Flow Measurement: drag force flow	Lecture	
	meter, turbine flow meter,		
Day26	electronic flow meter,	Lecture	
	electromagnetic flow meter, hot-		
	wire anemometer.		
Day27	Humidity definitions, Humidity	Lecture	Assignment 6
	measuring devices.		
Day28	Density and Specific Gravity,	Lecture	
	Basic terms		
Day29	Density measuring devices, Density	Lecture	Assignment 7
	application considerations,		
	Viscosity.		
Day30	Viscosity measuring instruments.	Lecture	
Day31	Basic terms used in pH, pH	Lecture	
	measuring devices, pH application		
	considerations. Problems.		
Day32	Introduction, basic components of	Lecture	
	control system.		
Day33	Classification : closed loop and	Lecture	
	open loop control system, transfer		
	function, block diagram		
	representation of closed loop		
	system		
Day34	Reduction techniques,	Lecture	
	mathematical modelling of various		
	mechanical systems and their		
	analogy with electrical systems,		
	signal flow graph and its		
	representation.	-	
Day35	Mathematical modelling of various	Lecture	Assignment 8
	mechanical systems and their		
	analogy with electrical systems,		
	signal flow graph and its		
	representation.	т.	
Day36	Mathematical modelling of various	Lecture	
D 27	mechanical systems	T ·	
Day37	I neir analogy with electrical	Lecture	
	systems, signal flow graph and its		
	representation.		

Day38	Basics of actuatorspneumatic controller, hydraulic controller and their comparison	Lecture	
Day39	Actuators pneumatic controller	Lecture	
Day40	Hydraulic controller and their	Lecture	
	comparison		