Lesson Plan of Electronics & Comm. Engineering Deptt. 6th Semester

Subject : Organizational Behaviour (HM-901A)

Objective of Course :

- 1. An overview about organizational behavior as a discipline and understanding the concept of individual behavior.
- 2. Understand the concept and importance of personality, emotions and its importance in decision making and effective leadership.
- 3. Enabling the students to know about the importance of effective motivation and its contribution in group dynamics and resolving conflicts.
- 4. Understand how to overcome organizational stress by maintaining proper organizational culture and effective communication

Day	Topic / Chapter Covered	Academic Activity	Test/Assignment
Day 1	Introduction to organizational	Lecture	
	behavior: Concept and importance		
	of organizational behavior		
Day 2	Role of Managers in OB	Lecture	
Day 3	Foundations or approaches to	Lecture	
	organizational behaviour		
Day 4	Challenges and opportunities for OB.	Lecture	
Day 5	Foundation of individual behavior:	Lecture	
	Biographical characteristics		
Day 6	Concept of abilities and learning	Lecture	
Day 7	Learning and learning cycle	Lecture	
Day 8	Components of learning	Lecture	Assignment 1
Day 9	Concept of values and attitude,	Lecture	
	types of attitude		
Day10	Attitude and workforce diversity.	Lecture	
Day11	Introduction to personality and	Lecture	
	emotions: Definition and Meaning		
	of Personality		
Day12	Determinants of Personality	Lecture	
Day13	Personality Traits Influencing OB	Lecture	
Day14	Nature and Meaning of Emotions	Lecture	
Day15	Emotions dimensions	Lecture	
Day16	Concept of Emotional intelligence.	Lecture	
Day17	Perception and individual decision	Lecture	
	making: meaning of perception		
Day18	Factors influencing perception	Lecture	Assignment 2
Day19	Rational decision making process	Lecture	
Day20	Concept of bounded rationality	Lecture	
Day21	Leadership-trait approaches	Lecture	
Day22	Behavioural approaches, situational	Lecture	
	approaches		
Day23	Emerging approaches to leadership.	Lecture	
Day24	Motivation: Concept and theories	Lecture	
	of motivation		

Day25	Theories of motivation-Maslow,	Lecture	
	two factor theory		
Day26	Theory X and Y, ERG Theory	Lecture	
Day27	McClelland's theory of needs, Goal setting theory	Lecture	Assignment 3
Day28	Application of theories in organizational scenario	Lecture	
Day29	Linkage between MBO and goal setting theory	Lecture	
Day30	Employee recognition and involvement program	Lecture	
Day31	Foundations of group behavior and conflict management: Defining and classifying of groups	Lecture	
Day32	Stages of group development, Informal and formal groups- group dynamics	Lecture	
Day33	Managing conflict and negotiation, a contemporary perspective of intergroup conflict	Lecture	
Day34	Causes of group conflicts, managing intergroup conflict through resolution	Lecture	
Day35	IntroductiontoOrganizationalCommunication:Meaningandimportanceofcommunicationprocess	Lecture	Assignment 4
Day36	Importanceoforganizationalcommunication,effectivecommunication	Lecture	
Day37	Organizational stress: definition and meaning sources and types of stress	Lecture	
Day38	Impact of stress on organizations, stress management techniques.	Lecture	
Day39	Introduction to Organization Culture: Meaning and nature of organization culture	Lecture	
Day40	Types of culture, managing cultural diversity	Lecture	
Day41	Managing change and innovation- change at work, resistance to change	Lecture	
Day42	A model for managing organizational change	Lecture	

Lesson Plan of Electronics & Comm. Engineering Deptt. 6th Semester

Subject : Control System Engineering (EC-302A)

Objective of Course :

The purpose of this course is to create awareness about the various types of control systems with the techniques to analyze them so that the learner is able to mathematically design and evaluate the conditions for which a control system can provide stable output with improved performance.

Day	Topic / Chapter Covered	Academic Activity	Test/Assignment
Day 1	Introduction	Lecture	
Day 2	The Control system-Open loop &	Lecture	
	Closed loop		
Day 3	Servomechanism, Stepper motor	Lecture	
Day 4	Mathematical Models of Physical	Lecture	Assignment 1
	Systems		
Day 5	Differential equation of physical	Lecture	
	systems, Transfer Function		
Day 6	Block Diagram Algebra, Signal	Lecture	
	Flow-Graphs		
Day 7	Mason's Formula & its application	Lecture	
Day 8	Feedback Characteristics of Control	Lecture	Assignment 2
	Systems: Feedback and Non-		
	Feedback systems		
Day 9	Effects of Feedback on sensitivity	Lecture	
	(to parameter variations)		
Day10	Stability, Overall gain etc.	Lecture	
Day11	Time Response Analysis	Lecture	
Day12	Standard test signals	Lecture	
Day13	Time response of first order and	Lecture	Assignment 3
	second order systems		
Day14	Steady-State Errors and Error	Lecture	
	Constants	_	
Day15	Design Specification of second-	Lecture	
	order- systems		
Day16	Stability: The concept of stability,	Lecture	
	necessary conditions for stability		
Day17	Hurwitz Stability Criterion	Lecture	
Day18	Routh Stability Criterion, Relative	Lecture	Assignment 4
	Stability Analysis	.	
Day19	The Root Locus Technique: The	Lecture	
	Root Locus Concept	.	
Day20	Construction development of Root	Lecture	
D 01	loci for various systems	.	
Day21	Stability considerations	Lecture	
Day22	Proportional, Integral and	Lecture	
	Derivative Controllers	Ŧ	
Day23	Frequency Response & Stability	Lecture	Assignment 5
	Analysis	T	
Day24	Correlation between Time and	Lecture	

	Frequency response		
Day25	Polar Plots	Lecture	
Day26	Nyquist plots	Lecture	
Day27	Bode Plots	Lecture	Assignment 6
Day28	Nyquist Stability criterion	Lecture	
Day29	Gain margin & Phase margin	Lecture	Assignment 7
Day30	Relative stability using Nyquist	Lecture	
	Criterion, frequency response		
	specifications.		
Day31	Compensation of Control Systems	Lecture	
Day32	Necessity of Compensation	Lecture	
Day33	Phase Lag compensation	Lecture	
Day34	Phase Lead Compensation	Lecture	
Day35	Phase Lag Lead Compensation	Lecture	Assignment 8
Day36	Feedback Compensation	Lecture	
Day37	State Variable Analysis: Concept of	Lecture	
	State		
Day38	State Variable and State Model	Lecture	
Day39	State Models for Linear Continuous	Lecture	
	Time Systems		
Day40	Diagonalization	Lecture	
Day41	Solution of state equations	Lecture	
Day42	Concept of Controllability and	Lecture	
	Observability		

(Sign. of HOD)

(Sign. of Teacher Concerned with date)

Lesson Plan of Electronics & Comm. Engineering Deptt. 6th Semester

Subject : Verilog HDL (EC-306A)

Objective of Course :

To familiarize the students with the conventions of the Verilog HDL programming, algorithmic levels of abstraction for modelling digital hardware systems, the concept of testbenches to create testing, behavioral environments for simulation based verification.

Day	Topic / Chapter Covered	Academic Activity	Test/Assignment
Day 1	Introduction: Introduction,	Lecture	
	conventional approach to digital		
	design		
Day 2	VLSI design, ASIC design flow	Lecture	
Day 3	Role of HDL, Conventional Data	Lecture	
	flow, ASIC data flow		
Day 4	Verilog as HDL	Lecture	Assignment 1
Day 5	Levels of Design Description,	Lecture	
	Concurrency		
Day 6	Simulation and Synthesis,	Lecture	
	Functional Verification	-	
Day 7	System Tasks, Programming	Lecture	
	Language Interface (PLI)	.	
Day 8	Module, Simulation and Synthesis	Lecture	
	Tools, Test Benches	T	
Day 9	Language constructs and	Lecture	
	conventions: Introduction,		
	Keywords, Identifiers, White Space		
D10	Characters	T. a. a face was	
Day10	Comments, Numbers, Strings,	Lecture	
Devil 1	Logic values	Lastaria	
Dayii	Strengths, Data Types, Scalars and Vactors, Deremeters	Lecture	
Dev12	Memory Operators System Teals	Looturo	
Day12	Cate level modelling: Introduction	Lecture	Assignment 2
Day15	AND Gate Primitive	Lecture	Assignment 2
Dav14	Illustrative Examples Tri-State	Lecture	
Day14	Gates	Lecture	
Dav15	Array of Instances of Primitives	Lecture	
Day15 Day16	Additional Examples Design of	Lecture	
Dujio	Flip-flops with Gate Primitives	Locture	
Dav17	Delays. Strengths and Contention	Lecture	
,	Resolution, Net Types, Design of		
	Basic Circuits.		
Day18	Behavioral modelling: Introduction,	Lecture	
2	Operations and Assignments		
Day19	Functional Bifurcation, Initial	Lecture	
	Construct		
Day20	Always Construct, Examples	Lecture	
Day21	Assignments with Delays, Wait	Lecture	
-	construct, Multiple Always Blocks		

Day22	Designs at Behavioral Level, Blocking and Non-blocking	Lecture	
	Assignments		
Day23	The case statement, Simulation Flow	Lecture	Assignment 3
Day24	If and ifelse constructs	Lecture	
Day25	Assign-deassign construct, repeat construct	Lecture	
Day26	For loop, the disable construct	Lecture	
Day27	While loop, forever loop	Lecture	
Day28	Parallel blocks, force-release construct	Lecture	
Day29	Event	Lecture	
Day30	Modelling at data flow level: Introduction, Continuous Assignment Structures	Lecture	
Day31	Delays and Continuous Assignments	Lecture	
Day32	Assignment to Vectors, Operators	Lecture	
Day33	Additional Examples	Lecture	
Day34	Switchlevelmodelling:Introduction,BasicTransistorSwitchesSwitchesSwitches	Lecture	
Day35	CMOS Switch, Bi-directional Gates, Time Delays with Switch Primitives	Lecture	Assignment 4
Day36	Instantiations with Strengths and Delays, Strength Contention with Trireg Nets.	Lecture	
Day37	Functions, tasks, and user defined primitives: Introduction, Function	Lecture	
Day38	Tasks	Lecture	
Day39	User- Defined Primitives (UDP)	Lecture	
Day40	FSM Design (Moore and Mealy Machines)	Lecture	
Day41	System tasks, functions, and compiler directives: Introduction, Parameters	Lecture	
Day42	Path Delays, Module Parameters, System Tasks and Functions	Lecture	
Day43	File-Based Tasks and Functions, Compiler Directives	Lecture	Assignment 5
Day44	Hierarchical Access, General Observations	Lecture	

Lesson Plan of Electronics & Comm. Engineering Deptt. 6th Semester

Subject : Transducer & Their Applications (ECO-8A)

Objective of Course :

Understanding the structural and functional principles of sensors and transducers used for various physical and nonelectric quantities and how to use them to measure these quantities.

Day	Topic / Chapter Covered	Academic Activity	Test/Assignment
Day 1	Definition of transducer	Lecture	
Day 2	Advantages of an electrical signal	Lecture	
	as output		
Day 3	Basic requirements of transducers	Lecture	
Day 4	Primary and Secondary Transducer	Lecture	Assignment 1
Day 5	Analog or digital types of	Lecture	
	transducers		
Day 6	Resistive, inductive, capacitive	Lecture	
Day 7	Piezoelectric	Lecture	
Day 8	Photoelectric	Lecture	Assignment 2
Day 9	Hall Effect tranducers	Lecture	
Day10	Measurement of Pressure	Lecture	
Day11	Manometers	Lecture	
Day12	Force summing devices	Lecture	
Day13	Electrical transducers	Lecture	
Day14	Measurement of Temperature	Lecture	
Day15	Metallic resistance thermometers	Lecture	
Day16	Semi conductor resistance sensors	Lecture	
	(Thermistors)		
Day17	Thermo-electric sensors	Lecture	
Day18	Pyrometers	Lecture	Assignment 3
Day19	Measurement of Displacement	Lecture	
Day20	Potentiometric resistance type	Lecture	
	transducers		
Day21	Inductive type transducers	Lecture	
Day22	Differential transformer (L.V.D.T)	Lecture	
Day23	Capacitive transducers	Lecture	
Day24	Hall effect devices	Lecture	
Day25	Strain gage transducers.	Lecture	
Day26	Measurement of Velocity	Lecture	
Day27	Variable reluctance pick up	Lecture	Assignment 4
Day28	Electromagnetic tachometers	Lecture	
Day29	Photoelectric tachometer	Lecture	
Day30	Toothed rotor tachometer generator	Lecture	

Day31	Measurement of Force	Lecture	
Day32	Strain-gage load cells	Lecture	
Day33	Pneumatic load cell	Lecture	
Day34	LVDT type force transducer	Lecture	
Day35	Measurement of Torque	Lecture	Assignment 5
Day36	Torque meter	Lecture	
Day37	Torsion meter	Lecture	
Day38	Absorption dynamometers	Lecture	
Day39	Inductive torque transducer	Lecture	
Day40	Digital methods	Lecture	

(Sign. of HOD)

(Sign. of Teacher Concerned with date)

Lesson Plan of Electronics & Comm. Engineering Deptt. 6th Semester

Subject : CMOS Design (ECP-7A)

Objective of Course :

- 1. Student will be able to analyze MOS transistor characteristics.
- 2. Student will be able to design CMOS invertor of specific characteristics.
- 3. Student will be able to design combinational CMOS circuit of given Boolean Equation.
- 4. Student will be able to design sequential CMOS circuit of given specification

Day	Topic / Chapter Covered	Academic Activity	Test/Assignment
Day 1	Introduction	Lecture	
Day 2	Overview of VLSI Design	Lecture	
	Methodologies		
Day 3	VLSI Design flow	Lecture	
Day 4	VLSI Design flow	Lecture	Assignment 1
Day 5	Design hierarchy	Lecture	
Day 6	VLSI Design styles	Lecture	
Day 7	VLSI Design styles	Lecture	
Day 8	MOS Transistor	Lecture	Assignment 2
Day 9	MOS structure	Lecture	
Day10	MOS structure	Lecture	
Day11	MOS system under external bias	Lecture	
Day12	Structure and operation of	Lecture	
	MOSFET		
Day13	C-V characteristics	Lecture	Assignment 3
Day14	MOS Invertors	Lecture	
Day15	Introduction	Lecture	
Day16	Resistive load invertor	Lecture	
Day17	Invertor with n-type MOSFET load	Lecture	
Day18	CMOS invertor	Lecture	Assignment 4
Day19	Circuit operation	Lecture	
Day20	Noise margin	Lecture	
Day21	Design of invertor	Lecture	
Day22	Design of invertor	Lecture	
Day23	Power and area consideration	Lecture	Assignment 5
Day24	Combinational MOS Logic	Lecture	
Day25	nMOS logic circuits with depletion	Lecture	
	nMOS load		
Day26	CMOS logic circuits	Lecture	
Day27	CMOS logic circuits	Lecture	Assignment 6
Day28	Complex logic circuits	Lecture	
Day29	Complex logic circuits	Lecture	Assignment 7
Day30	Complex logic circuits	Lecture	
Day31	CMOS pass gates	Lecture	
Day32	CMOS pass gates	Lecture	
Day33	Sequential MOS Logic circuits	Lecture	
Day34	Behaviour of bistable elemens	Lecture	
Day35	SR latch circuit	Lecture	Assignment 8

Day36	Clocked latch	Lecture	
Day37	Flip flop	Lecture	
Day38	Flip flop	Lecture	
Day39	CMOS D Latch	Lecture	
Day40	Edge triggered flip flop	Lecture	

(Sign. of HOD)

(Sign. of Teacher Concerned with date)