Lesson Plan of Electronics & Comm. Engineering Deptt. 4th Semester

Subject : Applied & Computational Mathematics (BS-207A)

Objective of Course :

The objective of this course is to familiarize the prospective Engineers with ordinary and partial differential equations, Laplace Transform which allow deterministic mathematical formulations of phenomena in engineering processes and to study numerical methods for the approximation of their solution.

Day	Topic / Chapter Covered	Academic Activity	Test/Assignment
Day 1	Ordinary & Partial Differential	Lecture	
	Equations		
Day 2	ODE: First order ordinary	Lecture	
	differential equations: Exact		
Day 3	Linear and Bernoulli's equations	Lecture	
Day 4	Euler's equations	Lecture	
Day 5	Equations not of first degree:	Lecture	
	equations solvable for p		
Day 6	Equations solvable for y, equations	Lecture	
	solvable for x		
Day 7	Clairaut's type.	Lecture	
Day 8	Second order linear differential	Lecture	Assignment 1
	equations with constant		
	coefficients.		
Day 9	PDE: Formation of Partial	Lecture	
	Differential Equations		
Day10	Solutions of first order linear and	Lecture	
	non-linear PDEs		
Day11	Charpit's method	Lecture	
Day12	Solution to homogenous linear	Lecture	
	partial differential equations (with		
	constant coefficients) by		
	complimentary function Particular		
	integral method		
Day13	Advance Calculus	Lecture	
Day14	Multivariable Calculus: Multiple	Lecture	
	Integration		
Day15	Double integrals (Cartesian),	Lecture	
	change of order of integration in		
	double integrals		
Day16	Change of variables (Cartesian to	Lecture	
	polar and)		
Day17	Triple integrals (Cartesian)	Lecture	
Day18	Orthogonal curvilinear coordinates	Lecture	Assignment 2
Day19	Simple applications involving	Lecture	
	cubes, sphere .		
Day20	Vector Calculus: Gradient,	Lecture	
	divergence		
Day21	Curl and their properties	Lecture	

Day22	Directional derivative	Lecture	
Day23	Line integrals, surface integrals,	Lecture	
	volume integrals		
Day24	Theorems of Green	Lecture	
Day25	Gauss and Stokes (without proof).	Lecture	
Day26	Laplace Transform	Lecture	
Day27	Laplace Transform, Laplace	Lecture	Assignment 3
_	Transform of Elementary Functions		
Day28	Basic properties of Laplace	Lecture	
	Transform		
Day29	Laplace transform of periodic	Lecture	
	functions		
Day30	Finding inverse Laplace transform	Lecture	
	by different methods		
Day31	Convolution theorem	Lecture	
Day32	Solving ODEs by Laplace	Lecture	
	Transform method.		
Day33	Numerical Techniques	Lecture	
Day34	Solution of polynomial and	Lecture	
	transcendental equations: Bisection		
	method		
Day35	Newton-Raphson method	Lecture	Assignment 4
Day36	Regula-Falsi method	Lecture	
Day37	Lagrange's formulae	Lecture	
Day38	Numerical Differentiation using	Lecture	
	Newton's forward and backward		
	difference formulae		
Day39	Numerical integration: Trapezoidal	Lecture	
	rule		
Day40	Simpson's 1/3 rd rule	Lecture	
Day41	Taylor's series	Lecture	
Day42	Runge-Kutta method for solving	Lecture	
	first and second order equations		

Lesson Plan of Electronics & Comm. Engineering Deptt. 4th Semester

Subject : Digital Communication (EC-202A)

- 1. To learn digitization of analog signal by pulse modulation system and analyze their system performance.
- 2. To analyze different baseband transmission schemes and their performance.
- 3. To learn and understand different digital modulation schemes and compute the bit error performance.
- 4. To analyze the different modulation tradeoffs and different equalization techniques.

Day	Topic / Chapter Covered	Academic Activity	Test/Assignment
Day 1	Pulse modulation	Lecture	
Day 2	Sampling process	Lecture	
Day 3	Pulse Amplitude	Lecture	
Day 4	Pulse code modulation (PCM)	Lecture	Assignment 1
Day 5	Differential pulse code modulation	Lecture	
Day 6	Delta modulation	Lecture	
Day 7	Noise considerations in PCM	Lecture	
Day 8	Time Division multiplexing	Lecture	Assignment 2
Day 9	Quantization noise in delta modulation	Lecture	
Day10	The O/P signal to quantization noise ratio in delta modulation	Lecture	
Day11	O/P signal to noise ratio in delta modulation	Lecture	
Day12	Varients of DM	Lecture	
Day13	Base Band Pulse Transmission	Lecture	Assignment 3
Day14	Matched filter and its properties	Lecture	
Day15	Average probability of symbol error in binary enclosed PCM receiver	Lecture	
Day16	Intersymbol interference	Lecture	
Day17	Nyquist criterion for distortionless base band binary transmission	Lecture	
Day18	Ideal Nyquist channel raised cosine spectrum	Lecture	Assignment 4
Day19	Correlative level coding Duo binary signaling	Lecture	
Day20	Tapped delay line equalization	Lecture	
Day21	Adaptive equalization	Lecture	
Day22	LMS algorithm	Lecture	
Day23	Eye pattern	Lecture	Assignment 5
Day24	Elements of Detection Theory	Lecture	
Day25	Optimum detection of signals in noise	Lecture	
Day26	Coherent communication with waveforms	Lecture	
Day27	Probability of Error evaluations	Lecture	Assignment 6

Day28	Pass band Digital Modulation	Lecture	
	schemes- ASK		
Day29	Phase Shift Keying	Lecture	Assignment 7
Day30	Frequency Shift Keying	Lecture	
Day31	Quadrature Amplitude Modulation	Lecture	
Day32	Continuous Phase Modulation	Lecture	
Day33	Minimum Shift Keying	Lecture	
Day34	Signal space diagram and spectra of	Lecture	
-	the above systems		
Day35	Effect of intersymbol interference	Lecture	Assignment 8
Day36	Bit symbol error probabilities	Lecture	
Day37	Synchronization	Lecture	
Day38	Digital Modulation tradeoffs	Lecture	
Day39	Optimum demodulation of digital	Lecture	
-	signals over band-limited channels		
Day40	Maximum likelihood sequence	Lecture	
-	detection (Viterbi receiver)		
Day41	Equalization Techniques	Lecture	
Day42	Synchronization and Carrier	Lecture	
	Recovery for Digital modulation.		

Lesson Plan of Electronics & Comm. Engineering Deptt. 4th Semester

Subject : Analog Circuits (EC-206A)

- 1. To make the students understand the analysis of various BJT and FET amplifiers using small signal models.
- 2. To teach the students the concept of describe the frequency response of multistage amplifiers and the detailed concept of feedback topologies.
- 3. To make the students learn various oscillator circuits using both Op-Amp and BJT.
- 4. To teach the students the various application circuits of Op-Amp and designing for a given specification.

Day	Topic / Chapter Covered	Academic Activity	Test/Assignment
Day 1	Amplifier Models	Lecture	
Day 2	Amplifier types: Voltage amplifier, current amplifier	Lecture	
Day 3	Trans-conductance amplifier and trans-resistance amplifier	Lecture	
Day 4	Comparison based on input impedance and output impedance	Lecture	Assignment 1
Day 5	Small signal analysis of BJT amplifiers	Lecture	
Day 6	CE, CB	Lecture	
Day 7	CC amplifiers using re model	Lecture	
Day 8	Small signal analysis of the CS JFET amplifiers	Lecture	
Day 9	Estimation of voltage gain, input resistance, output resistance etc.	Lecture	
Day10	Design procedure for particular specifications of amplifiers.	Lecture	
Day11	Transistor Frequency Response	Lecture	
Day12	Class A, class B	Lecture	
Day13	class C amplifiers	Lecture	Assignment 2
Day14	Calculation of maximum efficiency	Lecture	
Day15	Frequency response of the amplifiers: low frequency, mid- frequency and high frequency region	Lecture	
Day16	Effect of cascading of amplifiers on the frequency response	Lecture	
Day17	Cut-off frequencies	Lecture	
Day18	Bandwidth and voltage gain	Lecture	
Day19	Miller effect	Lecture	
Day20	Feedback in amplifiers: Voltage series, current series	Lecture	
Day21	Voltage shunt, current shunt, effect of feedback on gain	Lecture	
Day22	Bandwidth, input impedance, output impedance.	Lecture	

Day23	Oscillators	Lecture	Assignment 3
Day24	Barkhausen criterion for oscillators	Lecture	
Day25	Types of Oscillators	Lecture	
Day26	RC phase shift oscillator	Lecture	
Day27	Wien bridge oscillator	Lecture	
Day28	LC oscillators	Lecture	
Day29	Hartley oscillator	Lecture	
Day30	Collpit oscillator	Lecture	
Day31	Derivation of frequency of oscillation for BJT and Op-amp configurations	Lecture	
Day32	555 timer: operation as astable and monostable multivibrator	Lecture	
Day33	Op-Amp Applications	Lecture	
Day34	Simple op-amp circuits: adder, subtractor	Lecture	
Day35	Schmitt trigger	Lecture	Assignment 4
Day36	Differential amplifier: calculation of differential gain, common mode gain	Lecture	
Day37	CMRR	Lecture	
Day38	OP-AMP design	Lecture	
Day39	Design of differential amplifier for a given specification	Lecture	
Day40	Design of gain stages and output stages	Lecture	

Lesson Plan of Electronics & Comm. Engineering Deptt. 4th Semester

Subject : Microprocessors & Microcontrollers (EC-210A)

- 1. Acquired knowledge about the architecture of Microprocessors and Microcontrollers.
- 2. Acquired knowledge about instruction set and programming concept of Microprocessors and Microcontrollers in assembly and C language.
- 3. To understand peripheral interfacing with Microprocessors and Microcontrollers.
- 4. To design the systems /models based on Microprocessors and Microcontrollers

Day	Topic / Chapter Covered	Academic Activity	Test/Assignment
Day 1	Evolution of Microprocessor	Lecture	
Day 2	Introduction to 8-bit	Lecture	
	Microprocessor 8085 architecture		
Day 3	Pin Details 8085 Microprocessor	Lecture	
Day 4	8086 Architecture description of	Lecture	Assignment 1
	data registers, address registers;		
	pointer and index registers		
Day 5	PSW, Queue	Lecture	
Day 6	BIU and EU	Lecture	
Day 7	8086 Pin diagram descriptions	Lecture	
Day 8	Generating 8086 CLK and reset	Lecture	Assignment 2
	signals using 8284		
Day 9	WAIT state generation	Lecture	
Day10	Microprocessor BUS types and	Lecture	
	buffering techniques		
Day11	8086 minimum mode and	Lecture	
	maximum mode CPU module		
Day12	8086 CPU Read/Write timing	Lecture	
	diagrams in minimum mode and		
	maximum mode.		
		-	
Day13	8051 Architecture	Lecture	
Day14	On-chip memory organization –	Lecture	
	general purpose registers	-	
Day15	SFR registers	Lecture	
Day16	Internal RAM and ROM	Lecture	
Day17	Oscillator and Clock circuits	Lecture	
Day18	Pin Diagram of 8051	Lecture	Assignment 3
Day19	I/O Pins, Port	Lecture	
Day20	Connecting external memory	Lecture	
Day21	Counters and Timers	Lecture	
Day22	Purpose of TCON & TMOD	Lecture	
	registers		
Day23	Serial data transmission/reception	Lecture	
	and transmission modes		
Day24	Purpose of SCON & PCON	Lecture	
	registers		
Day25	Different Types of Interrupts	Lecture	

Day26	Purpose of Time Delays	Lecture	
Day27	8051 addressing modes	Lecture	Assignment 4
Day28	8086 Instruction format, addressing modes	Lecture	
Day29	Data transfer instructions, string instructions, logical instructions, arithmetic instructions	Lecture	
Day30	Transfer of control instructions	Lecture	
Day31	Process control instructions	Lecture	
Day32	8051 Data transfer instructions	Lecture	
Day33	Arithmetic and logical instructions	Lecture	
Day34	Jump and Call instructions	Lecture	
Day35	I/O port	Lecture	Assignment 5
Day36	Timer and Counter programming	Lecture	
Day37	Serial port and Interrupt programming	Lecture	
Day38	Assembly language programs	Lecture	
Day39	Memory devices	Lecture	
Day40	Address decoding techniques	Lecture	
Day41	Interfacing SRAMS; ROMS/PROMS	Lecture	
Day42	8086 Interrupt mechanism; interrupt types and interrupt vector table	Lecture	
Day43	Intel's 8255 - description and interfacing with 8086	Lecture	
Day44	ADCs and DACs, - types operation and interfacing with 8086.	Lecture	
Day45	Interfacing of Matrix Keyboards	Lecture	
Day46	ADC, DAC	Lecture	
Day47	Temperature Sensor	Lecture	Assignment 6
Day48	Stepper Motor with 8051	Lecture	

Lesson Plan of Electronics & Comm. Engineering Deptt. 4th Semester

Subject : Electromagnetic Field Theory (EC-214A)

Objective of Course :

The objective of this course is to familiarize the prospective Engineers with Electromagnetic Fields and their Theories.

Day	Topic / Chapter Covered	Academic Activity	Test/Assignment
Day 1	Vector analysis in all the three	Lecture	
	coordinate system, line, surface		
Day 2	Volume integrals, gradient	Lecture	
Day 3	Divergence & curl of a vector &	Lecture	
	their physical significance		
Day 4	Gauss Divergence theorem	Lecture	Assignment 1
Day 5	Stokes theorem	Lecture	
Day 6	Gauss law in electrostatics & its	Lecture	
	applications		
Day 7	Uniform line	Lecture	
Day 8	Surface & volume charge	Lecture	Assignment 2
	distributions		
Day 9	Concepts of electric field & electric	Lecture	
	potentials		
Day10	Electric field & potential due to a	Lecture	
	linear dipole		
Day11	Method of images	Lecture	
Day12	Biot Savart's law	Lecture	
Day13	Amperes circuital law & its	Lecture	Assignment 3
	applications		
Day14	Boundary conditions for both the	Lecture	
	electric & magnetic fields at the		
	interface of various types of media		
Day15	Laplace	Lecture	
Day16	Poisson's equation & continuity	Lecture	
	equation		
Day17	Faraday's & Lenz's laws	Lecture	
Day18	How Maxwell fixed Ampere's law	Lecture	Assignment 4
Day19	Maxwell's equations in differential	Lecture	
	& integral forms & their physical		
	significance in circuit theory		
Day20	Retarded potentials	Lecture	
Day21	Plane & uniform plane waves and	Lecture	
	their properties		
Day22	Waves equations in various media	Lecture	
Day23	Polarisation & its types	Lecture	Assignment 5
Day24	Intrinsic impedance	Lecture	
Day25	Propagation constant	Lecture	
Day26	Reflection & refraction of uniform	Lecture	
	plane waves at the interface of		
	conductor- dielectric & dielectric -		
	dielectric (both normal and oblique		

	incidence)		
Day27	Relaxation time ,skin effect	Lecture	Assignment 6
Day28	Skin depth & surface impedance	Lecture	
Day29	Poynting vector theorem & its physical significance.	Lecture	Assignment 7
Day30	Distributed parameters, circuit parameters	Lecture	
Day31	Concepts of voltage & current flow on a transmission line	Lecture	
Day32	Transmission line equations, characteristic impedance	Lecture	
Day33	Reflection of transmission line	Lecture	
Day34	Maxima & minima	Lecture	
Day35	Standing wave ratio of a transmission line	Lecture	Assignment 8
Day36	Impedance matching	Lecture	
Day37	Smith's chart & its computational applications	Lecture	
Day38	Concept of Wave Guide and TE, TM	Lecture	
Day39	TEM modes in rectangular and circular wave guide	Lecture	
Day40	Cut off and guide wave length	Lecture	

Lesson Plan of Electronics & Comm. Engineering Deptt. 4th Semester

Subject : Basics of Analog Communication (ES-208A)

- 1. Describe different types of noise and predict its effect on various analog communication systems.
- 2. Understand and analyze various Amplitude modulation and demodulation methods.
- 3. Understand and analyze Angle modulation and demodulation methods.
- 4. Understand the concepts of Transmitters and Receivers and their circuits.

Day	Topic / Chapter Covered	Academic Activity	Test/Assignment
Day 1	Communication system and Noise: Constituents of communication	Lecture	
Day 2	systemModulation,requirement	Lecture	
Day 3	Noise, Classification of noise, Resistor noise	Lecture	
Day 4	Multiple resistor noise sources	Lecture	Assignment 1
Day 5	Noise Temperature, Noise bandwidth, Noise figure, its calculation and measurement	Lecture	
Day 6	Bandpass noise representation	Lecture	
Day 7	NoisecalculationinCommunicationSystems:NoiseinAmplitudeModulatedSystemIn	Lecture	
Day 8	Noise in angle modulated systems.	Lecture	Assignment 2
Day 9	Analog Modulation Techniques: Theory of amplitude modulation, AM power calculations	Lecture	
Day10	AM modulation with a complex wave, Concepts of angle modulation	Lecture	
Day11	Theory of frequency modulation, Mathematical analysis of FM	Lecture	
Day12	Spectra of FM signals, Narrow band FM, Wide band FM	Lecture	
Day13	Phasemodulation,Phasemodulationobtainedfromfrequency modulation	Lecture	Assignment 3
Day14	Comparison of AM, FM & PM.	Lecture	
Day15	AM Transmission: Generation of Amplitude Modulation	Lecture	
Day16	Low level and high level modulation, Basic principle of AM generation	Lecture	
Day17	Square law modulation, Vander bijl modulation	Lecture	
Day18	Suppressed carrier AM generation	Lecture	Assignment 4

	(Balanced Modulator) ring		
	Modulator.		
Day19	AM Reception: Tuned Ratio Frequency (TRF) Receiver	Lecture	
Day20	Super heterodyne Receiver, RF Amplifier	Lecture	
Day21	Image Frequency Rejection, Cascade RF Amplifier	Lecture	
Day22	Frequency Conversion and Mixers	Lecture	
Day23	Tracking & and Alignment, IF Amplifier	Lecture	Assignment 5
Day24	AM detectors, Distortion in diodedetectors,AMreceivercharacteristics	Lecture	
Day25	FM Transmission: FM allocation standards	Lecture	
Day26	Generation of FM by direct method, Varactor diode Modulator	Lecture	
Day27	Indirect generation of FM	Lecture	Assignment 6
Day28	The Armstrong method RC phase shift method	Lecture	
Day29	Frequency stabilized reactance FM transmitter, FM stereo transmitter, Noise triangle.	Lecture	Assignment 7
Day30	FM Reception: Direct methods of Frequency demodulation	Lecture	
Day31	Frequency discrimination (Balanced slope detector)	Lecture	
Day32	Foster seelay of phase discriminator, Ratio detector	Lecture	
Day33	Indirect method of FM demodulation, FM detector using PLL	Lecture	
Day34	Pre-emphasis / de-emphasis, FM receiver, FM stereo receiver.	Lecture	
Day35	SSB Transmission: Introduction, Advantages of SSB Transmission	Lecture	Assignment 8
Day36	Generation of SSB, The Filter method The Phase Shift Method	Lecture	
Day37	The Third Method, Pilot Carrier SSB	Lecture	
Day38	Vestigial Side-band Modulation (VSB), VSB-SC	Lecture	
Day39	Application of AM and FM in TV transmission.	Lecture	
Day40	SSB Reception: SSB Product Demodulator	Lecture	
Day41	Balanced Modulator as SSB Demodulator, Pilot Carrier SSB Receiver	Lecture	
Day42	Modern Communication Receiver.	Lecture	
Day43	AnalogPulseModulation:Introduction,Pulseamplitude	Lecture	Assignment 9

	modulation (PAM), PAM Modulator Circuit, Demodulation of PAM Signals		
Day44	Pulse Time Modulation (PTM):	Lecture	
	Pulse Width Modulation (PWM)		
Day45	Pulse Position Modulation (PPM),	Lecture	
	PWM and PPM Demodulator		