:	ER. TANUJ
:	CIVIL
:	4 [™]
:	S.A-II (CE-202N)
:	15 weeks (from January, 2018 to April, 2018)
	: : : :

Work Load (Lecture/Practical) per week (in hours): Lectures - 03

WEEK		THEORY		
		ΤΟΡΙϹ		
	LECTURE	(including assignment / test)		
	DAY			
	1st	Introduction, Static and Kinematic Indeterminacies,		
1st	2nd	Castigliano's theorems		
	3rd	Castigliano's theorems		
	1st	Strain energy method		
2nd	2nd	Analysis of frames with one or two redundant members using Castigliano's 2nd theorem.		
	3rd	Analysis of frames with one or two redundant members using Castigliano's 2nd theorem.		
	1st	Slope deflection - introduction		
3rd	2nd	Analysis of continuous beams		
	3rd	portal frames		
4th	1st	Numerical related slope deflection method		

4th	2nd	Numerical related slope deflection method				
	3rd	Numerical related slope deflection method				
	1st	moment Distribution Methods: introduction				
5th	2nd	Portal frames with inclined members.				
	3rd	Numerical related moment distribution method				
	1st	Numerical related moment distribution method				
6th	2nd	Numerical related moment distribution method				
	3rd	Assignment : above topic				
7th	1st Column Analogy Method: Elastic centre					
	2nd	Properties of analogous column,				
	3rd	Applications to beam & frames.				
	1st	Related numerical of above topic				
8th	2nd	Related numerical of above topic				
	3rd	Analysis of Two hinged Arches: introduction				
	1st	Parabolic and circular Arches,				
9th	2nd	Bending Moment Diagram for various loadings,				
	3rd	Temperature effects, Rib shortening,				
	1st	Axial thrust and Radial Shear force diagrams.				
10th	2nd	Related numerical of above topic				
	3rd	Assignment of above topic				
	1st	Unsymmetrical Bending : Introduction				
11th	2nd	Centroidal principal axes of sections,				

	3rd	Bending stresses in beam subjected to unsymmetrical bending,		
12th	1st	shear centre, shear centre for channel		
	2nd	Angles and Z sections.		
		Related numerical of above topic		
	1st	Cable and suspension Bridges: introduction		
13th	2nd	uniformly loaded cables,		
	3rd	Temperature stresses,		
	1st	three hinged stiffening Girder		
14th	2nd	Related numerical of above topic		
	3rd	Related numerical of above topic		
15th	1st	two hinged stiffening Girder		
	2nd	Related numerical of above topic		
	3rd	Assignment of above topic		

Name of the Faculty	:	ER. ROHIT
Discipline	:	CIVIL
Semester	:	4 [™]
Subject	:	D.S.S –I (CE-204N)
Lesson Plan Duration	:	15 weeks (from January, 2018 to April, 2018)

WEEK	THEORY			
		ΤΟΡΙϹ		
	LECTURE	(including assignment / test)		
	DAY			
1st	1st	Introduction: Loads, structural steels and their specifications, structural elements, steel vs. concrete and timber		
	2nd	Design specifications as per IS: 800, structural layout, strength and stiffness considerations, efficiency of cross-section, safety and serviceability considerations.		
	3rd	RIEVTED CONNECTION: Riveting and bolting their types , failures of riveting joint, efficiency of a joint, ,		
2 nd	1st	Design of riveted joint , advantages and disadvantages of riveted joint, Stress in bolts		
	2nd	Welded connection, types of welded joints, design of welded joint , subjected to axial loads, welded joints subjected to eccentric loads		
	3rd	Semi rigid and rigid connections.		
3rd	1st	Design of tension members, introduction, types of tension		

3rd		members, net sectional areas.		
	2nd	Design of tension members. Lug angles and splices.		
	3rd	strength and stiffness considerations, efficiency of cross-section, safety and serviceability considerations.		
	1st	advantages and disadvantages of riveted joint, Stress in bolts		
4th	2nd	subjected to axial loads, welded joints subjected to eccentric Loads		
	3rd	structural elements, steel vs. concrete and timber.		
	1st	Design of compression meters:		
5th	2nd	Introduction, effective length and slenderness ratio, various		
		types of section used for columns		
	3rd	Design of built up columns.		
	1st	Numerical		
6th	2nd	Numerical		
	3rd	Lacing and battens		
	1st	Numerical		
7th	2nd	Numerical		
	3rd	Columns basis and footings		
	1st	Introduction types of columns basis		
8th	2nd	Design of slab base and gusted base		
	3rd	Design of grillage foundation		
	1st	Numerical		
9th	2nd	Numerical		
	3rd	Numerical		

	1st	Design of beams		
10th	2nd	Introduction: types of section, supported and unsupported		
		beams.		
	3rd	Design of built up beams		
	1st	Web buckling and web crippling		
11th	2nd	Diagonal buckling		
	-			
	3rd	Numerical		
12th	1st	Numerical		
	2nd	Numerical		
		Numerical		
		Numerical		
	1st	Gantry girder		
13th	2nd	Design and types		
	3rd	Design steps		
	1st	Numerical		
1/+h	204	Eccentric loading and concentric clouding		
14(1)	210			
	3rd	Crane load		
	514			
	1st	Plate girder		
		-		
15th	2nd	Stiffeners		
	3rd	Necessity of plate girder		

Name of the Faculty :		ER. ROHIT
Discipline	:	CIVII
Semester	:	4 [™]
Subject	:	FM-II (CE-206N) & FM-II (P) (CE-212N)
Lesson Plan Duration	:	15 weeks (from January, 2018 to April, 2018)

WEEK	THEORY		PRATICAL		
	LECTURE	TOPIC (including assignment / test)	PRACTICAL DAY	ΤΟΡΙϹ	
	DAY				
1st	1st 2nd	NAVIER STOCK EQUATION, LAMINAR FLOW BETWEEN PARELLAL PLATES.	1	To determine the coefficient of drag by Stoke's law for spherical bodies.	
	3rd	Coutte' flow laminar flow through pipes, laminar flow around a sphere,			
2 nd	1st 2nd	Stock' law flow through pipes:- types of flow	2	To study the phenomenon of cavitations in pipe flow.	
	3rd	Reynolds experiment, shear stress on turbulent flow, boundary layer in pipes			
3rd	1st	Establishment of flow , velocity distribution through rough and			

3rd		smooth pipes		
	2nd	Resistance	3	To determine the critical Reynolds's number for
	3rd	Station and moody diagram		flow through commercial pipes.
4th	1st	Darcy weisbach equation , energy looses in pipes		To determine the
	2nd	Loss due to sudden expansion	4	coefficient of discharge for flow over a broad crested
	3rd	Total energy line , pipes in series and in parallel .branched pipe, pipe networks, hardy cross method, water hammer.		weir.
5th	1st	Drag and lift force, types of drag	5	Copy check and viva
	2nd	Drag on a sphere,		voce
	3rd	Flat plate		
	1st	Cylinder		
6th	2nd	And airfoil development of lift on immersed bodies likes circular cylinder and airfoil.	6	To study the characteristics of a hydraulic jump on a horizontal floor and
	3rd	Open channel flow		sloping glacis including friction blocks.
	1st	Types of flow in open channels		
7th	2nd	Geometric parameters of channels section	7	To study the scouring phenomenon around a bridge pier model.
	3rd	Uniform flow		
	1st	Most economical section		To study the scouring phenomenon for flow past
8th	2nd	Rectangular and trapezoidal specific energy and critical	8	a spur.

		depth		
	3rd	Momentum in open channel		
	1st	Specific force		
9th	2nd	Critical flow in rectangular channel	9	Copy check and viva voce
	3rd	Applications of specific energy and discharge diagram		
	1st	Surges in channel		
10th	2nd	Compressible flow	10	To determine the characteristics of a
	3rd	Basic relationship of thermodynamics of continuity momentum and energy equation.		centrifugal pump.
	1st	Mach no and its signification		
11th	2nd	Subsonic and supersonic flows	11	To study the momentum
	3rd	Stagnation pressure		characteristics of a given jet.
12th	1st	Pumps and turbines		
	2nd	Reciprocating and centrifugal pumps	12	To determine head loss due to various pipe fittings.
		Single and double acting reciprocating pumps.		
	1st	Parts and working		
13th	2nd	Types of turbines	13	Final copies check
	3rd	Peloton wheel turbine	1	
	1st	Kaplan turbines		

14th	2nd	Reaction turbines		
	3rd	Cavitations	14	Internal viva
	1st	Numerical		
15th	2nd	Numerical	15	Internal viva
	3rd	Numerical		

Name of the Faculty	:	ER. NEELAZ
Discipline	:	Civil
Semester	:	4 [™]
Subject	:	soil mechanics (CE-208N)
Lesson Plan Duration	:	15 weeks (from January, 2018 to April, 2018)

WEEK	THEORY		
		ΤΟΡΙϹ	
	LECTURE	(including assignment / test)	
	DAY		
	1st	Soil formation and composition	
1st	2nd	Origin, weathering, soil formation major soil deposits of India	
	3rd	Principle clay minerals	
	1st	Basic soil properties	
2 nd	2nd	Three phase system, wt vol. relationship, sil grain properties, soil aggregate properties, grain size analysis, sieve analysis, consistency of soil, consistency limits , sedimentation	
	3rd	Activity of clays, relative density of sands	
	1st	Classification of soil	
3rd	2nd	Purpose of classification , classification on te basis of plasticity , plasticity cart, Indian standard ,classification system	

	3rd	Permeability of soil
	1st	Introduction , Darcy law and its validity discharge velocity and seepage velocity, factors affecting permeability
	2nd	Coefficient of permeability and its determination.
	3rd	Effective stress concept:- principle, hydrostatic condition, capillary rise in soil and its zones.
	1st	2 D flow, seepage force, Laplace ' Eqn PROPERTIES and utilize of flow net, graphical method of constriction of flow nets in piping.
5th		protective filter compaction.
	2nd	Role of moisture , moisture density relationship, compaction in field, compaction of cohesive soil.
	3rd	Compaction of cohesion less soil . Field control of compaction.
	1st	Vertical stress below applied load
6th	2nd	Bousinezq Eqn, VERTICAL STRESS
	3rd	Distribution diagrams, vertical stress loaded areas , new marks influence chart , approximate stress distribution method for loaded areas.
	1st	Westergaurd analysis.
7th	2nd	Contact pressure .
	3rd	Compressibility and consolidation
	1st	Components of total settlement, consolidation process
8th	2nd	1D, consolidation test
	3rd	Terzaghi's one dimensional consolidation eqn.
9th	1st	Determination of coefficients of consolidation, consolidation settlements.
	2nd	Construction periods settlement , secondary consolidation

	3rd	Shear strength :-introduction, Mohr' stress circle, Mohr
		coulomb failure, relationship between principle stresses at
		failure
	1st	Shear test, direct shear test, vane shear test, unconfined
10th		compression test, triaxial compression test, drainage condition
10th		and parameters,
	2nd	Shear strength characteristic of strength
	3rd	Normally consolidation
	1st	Sensitivity and thixotropy
11th	2nd	Earth pressure
	3rd	Earth pressure at rest
12th	1st	Rankin's theory
	2nd	Active and passive pressure
		Numerical
	1st	Numerical
13th	2nd	Cullman Graphical construction
	3rd	Rebhanns constriction
	1st	Numerical
14th	2nd	Numerical
	3rd	Numerical
	1st	Numerical
15th	2nd	Active and passive pressure
	3rd	Plastic equilibrium
		Coulombs earth pressure theory

Name of the Faculty :		ER. ASHMINDER SINGH
Discipline	:	civil
Semester	:	4 ^{тн}
Subject	:	surveying-II (CE-210N) & surveying – II (P) (CE-216N)
Lesson Plan Duration :		15 weeks (from January, 2018 to April, 2018)

Work Load (Lecture/Practical) per week (in hours): Lectures – 03, Practical - 04

WEEK		THEORY		Practical
		ТОРІС	Described	-
	LECTURE	(including assignment / test)	Practical	Горіс
	DAY		day	
	1st	TRIGNOMETRY LEVELING:-		
1st		introduction	1	. To study the functions of various parts of theodolite.
	2nd	Height and distance, base of		
		the object accessible		
	3rd	Numerical		
	1st	Numerical		To carry out permanent
2 nd	2nd	Base is inaccessible	2	adjustments of a transit theodolite.
	3rd	Geoadatical observation		
	1st	Refraction and curvature		To measure horizontal and
3rd	2nd	Axis signal correction	3	vertical angles using a theodolite.
	3rd	Difference in elevation between		
		two points		

4th	1st	Triangulation:- systems,		
		classification strength of figure,		
4th		selection of triangulation	4	
		stations, grade of triangulation,		
		field work of triangulation, EDM		
	2nd	NUMERICAL		To determine the constants of a given tachometer.
	3rd	NUMERICAL		
	1st	NUMERICAL		
5th	2nd	Survey adjustment and	5	To determine the horizontal
		treatment of observations		distance & elevations of a
				given traverse with the help of
	3rd	Types of errors		a tachometer.
	1st	Definition of weight of an		
C 11		observation, law of accidental		
6th		errors.	6	Copy check and viva voce
	2nd	Law of weights		
	2nd 3rd	Law of weights Most probable values		
	2nd 3rd 1st	Law of weights Most probable values Determination of probable		
	2nd 3rd 1st	Law of weights Most probable values Determination of probable errors		
7th	2nd 3rd 1st	Law of weights Most probable values Determination of probable errors	7	To set out simple curves by
7th	2nd 3rd 1st 2nd	Law of weights Most probable values Determination of probable errors Different cases with examples	7	To set out simple curves by offsets from tangents.
7th	2nd 3rd 1st 2nd 3rd	Law of weights Most probable values Determination of probable errors Different cases with examples Numerical	7	To set out simple curves by offsets from tangents.
7th	2nd 3rd 1st 2nd 3rd 1st	Law of weights Most probable values Determination of probable errors Different cases with examples Numerical Numerical	7	To set out simple curves by offsets from tangents.
7th 8th	2nd 3rd 1st 2nd 3rd 1st 2nd	Law of weights Most probable values Determination of probable errors Different cases with examples Numerical Numerical Principle of least square	7	To set out simple curves by offsets from tangents. To set out curves by offsets from chords produced
7th 8th	2nd 3rd 1st 2nd 3rd 1st 2nd 3rd 3rd	Law of weights Most probable values Determination of probable errors Different cases with examples Numerical Numerical Principle of least square Adjustment of triangulation	7	To set out simple curves by offsets from tangents. To set out curves by offsets from chords produced.
7th 8th	2nd 3rd 1st 2nd 3rd 1st 2nd 3rd 3rd	Law of weights Most probable values Determination of probable errors Different cases with examples Numerical Numerical Principle of least square Adjustment of triangulation figures by methods of least	7	To set out simple curves by offsets from tangents. To set out curves by offsets from chords produced.
7th 8th	2nd 3rd 1st 2nd 3rd 1st 2nd 3rd 3rd	Law of weights Most probable values Determination of probable errors Different cases with examples Numerical Numerical Principle of least square Adjustment of triangulation figures by methods of least squares.	7	To set out simple curves by offsets from tangents. To set out curves by offsets from chords produced.
7th 8th	2nd 3rd 1st 2nd 3rd 1st 2nd 3rd 3rd	Law of weights Most probable values Determination of probable errors Different cases with examples Numerical Principle of least square Adjustment of triangulation figures by methods of least squares.	7	To set out simple curves by offsets from tangents. To set out curves by offsets from chords produced.
7th 8th 9th	2nd 3rd 1st 2nd 3rd 1st 2nd 3rd 3rd 1st	Law of weightsMost probable valuesDetermination of probable errorsDifferent cases with examplesDifferent cases with examplesNumericalPrinciple of least squareAdjustment of triangulation figures by methods of least squares.types of Arial photograph, Arial	7	To set out simple curves by offsets from tangents. To set out curves by offsets from chords produced.
7th 8th 9th	2nd 3rd 1st 2nd 3rd 1st 2nd 3rd 1st 1st	Law of weightsMost probable valuesDetermination of probable errorsDifferent cases with examplesDifferent cases with examplesNumericalPrinciple of least squareAdjustment of triangulation figures by methods of least squares.types of Arial photograph, Arial camera, and height	7	To set out simple curves by offsets from tangents. To set out curves by offsets from chords produced.

9th		displacements in verticals		
	2nd	photographs	9	To set out simple curves by offsets from long chords.
	3rd	Stereoscopic vision,		
		stereoscopies, height		
		determination from parallax.		
	1st	Flight planning		
10th	2nd	Introduction of remote sensing	10	To set out simple curves by
		and its system:-GIS		Rankine's method of tangential deflection angles.
	3rd	Concept of G.I.S and G.P.S		
11th	1st	Components , data input and output.	11	Copy checks and viva
2nd	Astronomy :-study of stars.			
	3rd	Definitions of astronomical		
		terms		
	1st	Star at elongation.		
12th	2nd	Star at prime vertical	12	To measure the length of base line in triangulation survey.
		Star at horizon		
	1st	Star culmination		
13th	2nd	Celestial co-ordinates systems,	13	Triangulation with total station.
	3rd	Napier's rule		
	1st	Various time systems:- sidereal		
14th		, apparent , solar and mean solar times.	14	Final copy check of all practicals
	2nd	Equation of time its causes		

	3rd	Total station		
	1st	Working Principle		
15th	2nd	Survey with total station	15	Internal viva
	3rd	Numerical		

Name of the Faculty	:	ER. NEELAZ
Discipline	:	CIVIL
Semester	:	4 тн
Subject	:	SOIL MECHANICS (P) (CE-214N)
Lesson Plan Duration :		15 weeks (from January, 2018 to April, 2018)
Work Load (Lecture/Practical) per week (in hours): practical -04		

PRACTICAL WEEK PRACTICAL DAY TOPIC 1^{st} and 2^{nd} Visual Soil Classification and water content determination. **1**st 1st and 2nd 2nd Determination of specific gravity of soil solids. 1^{st} and 2^{nd} 3rd Grain size analysis-sieve analysis. 1^{st} and 2^{nd} 4^{th} Copies check and viva voce 1st and 2nd 5th Liquid limit and plastic limit determination. 1st and 2nd Field density by: Sand replacement method 6th 1st and 2nd Field density by: Core cutter method 7th 1^{st} and 2^{nd} 8th Proctor's compaction test. 1^{st} and 2^{nd} 9th Copies check and viva voce 1st and 2nd 10th Coefficient of permeability of soils. $\mathbf{1}^{\mathsf{st}}$ and $\mathbf{2}^{\mathsf{nd}}$ 11th Unconfined compressive strength test.

12 th	1 st and 2 nd	Direct shear test on granular soil sample.
13 th	1 st and 2 nd	Unconsolidated undrained (UU) triaxial shear test of fine grained soil sample.
14 th	1 st and2 nd	Final copies check
15 th	1 st and 2 nd	Internal viva

Lesson Plan

Name of faculty	: DR. POONAM KAMBOJ
Discipline	: MANAGEMENT
Semester	: 4
Subject	: Fundamentals of Management
Lesson Plan during	: 15 Weeks (From January 2018 to April, 2018)

** Work load (Lecture / practical) per week (In hours): lectures-03, practical – 00

		THEORY
WEEK	LECTURE	ТОРІС
	DAY	(INCLUDING ASSIGNMENT/ TEST)
1.	1.	Meaning, Definition, Nature Of FOM
	2.	Importance & Functions Of FOM
	3.	Management As Art, Science & Profession
2.	4.	Management As Social System
	5.	Concepts Of Management-Administration
	6.	Evolution Of Management Thought
3.	7.	Development Of Management Thought
	8.	Scientific Management
	9.	Administrative Theory Of Management
4.	10.	Bureaucratic Organization, Behavioral Approach
	11.	Human Relations Movement
	12.	Behavioral Science Approach
5.	13.	Modern Approach To Management
	14.	Systems Approach And Contingency Approach
	15.	Nature, Purpose And Functions, Types Of Plans
6.	16.	Planning Process
	17.	Strategies And Policies

	18.	Concept Of Corporate Strategy, Formulation Of Strategy
7.	19.	Types Of Strategies
	20.	Management By Objectives (MBO)
	21.	SWOT Analysis, Types Of Policies
8.	22.	Principles Of Formulation Of Policies
	23.	Nature, Importance, Process, Organization Structure
	24.	Line And Staff Organization
9.	25.	Delegation Of Authority And Responsibility
	26.	Centralization And Decentralization
	27.	Decision Making Process & Models
10	28.	Departmentalization: Concept And Types
	29.	Formal & Informal Organizations
	30.	Concept, Process, Features; Manpower Planning; Job Analysis: Concept And Process
11	31.	Recruitment And Selection: Concept, Process, Sources Of Recruitment
	32.	Performance Appraisal, Training And Development
	33.	Communication- Nature, Process, Formal And Informal, Barriers To Effective
		Communication
12	34.	Theories Of Motivation-Maslow, Herzberg, McGregor
	35.	Concept And Theories, Managerial Grid, Situational Leadership
	36.	Transactional And Transformational Leadership
13	37.	Concept, Process, Types, Barriers To Controlling, Controlling Techniques:
	38.	Budgetary Control, Return On Investment
	39.	Management Information System-MIS, TQM-Total Quality Management, Network Analysis- PERT And CPM

1	L4	40.	Socia Total	al Responsibility Of Management–Management Of Crisis, l Quality	
			Mana	agement, Stress Management	
		41.	Ethic	Concept Of Corporate Social Responsibility	(CSR) And Business
			Func	tional Aspects Of Business	
	4	42.	Conc	ceptual Framework Of Functional Areas Of Management	
-	15	13.	Finan	nce	
		44.	Mark	keting	
		45.	Hum	an Resources	

Lesson Plan

Name of the Faculty	:	ER BRIJ BHUSHAN
Discipline	:	Mechanical Engineering
Semester	:	4 th
Subject	:	E.S (MPC-202N)
Lesson plan	:	15 Weeks(From January, 2018 to April,
		2018)

Lecture per Week (in Hours) : Lectures-03

Week	Veek Theory		
	Lecture	Topic(including assignment/test)	
	Day		
1 st	1.	UNIT-I Types of energy, Conversion of various forms of energy, Conventional and Non	
	2.	Conversion of various forms of energy	
	3.	Conventional and Non	
	4.	Conventional and Non-conventional sources	
2 nd	5.	Need for Non-Conventional Energy based power generation.	
	6.	General Principles of Energy Management	
	7.	Energy Management Strategy	
	8.	Energy Audit & Tariffs	
3 rd	9.	Methodology and Approach	
	10.	Assignment-INeed for Non-Conventional Energy based power generation.	
	11.	TEST-I	
	12.	Selection of site	
4 th	13.	working of Thermal	
	14.	Hydro, Nuclear and Diesel	
	15.	power plants and their schematic diagrams	
	16.	their comparative advantages	
5 th	17.	Assignment-II power plants and their schematic diagrams	
	18.	TEST-II	
	19.	Non Conventional Energy sources	
	20.	Basicprinciple	
6 th	21.	site selection	
	22.	power plant layout of Solar	

	23.	energy, photovoltaic technologies,
	24.	PV Systems and their components
7th 25. power plant layout		power plant layout
	26.	PV Systems and their components
	27.	Wind energy
	28.	layout of Bio energy plants
8 th	29.	Geothermal energy plants
	30.	tidal energy plants.
	31.	Assignment III PV Systems and their components, Wind energy
	32.	TEST-III
9th	33.	Energy Scenario
	34.	Lay out of power system,
	35.	Role of Energy in Economic development
	36.	Lay out of power system,
10 ^m	37.	energy demand
	38.	availability and consumption
	39.	Commercial and Non-commercial energy
	40.	Indian energy scenario
11 ^{ui}	41.	long term energy scenario
	42.	energy pricing
	43.	energy sector reforms in India
	44.	energy strategy
12 ^{un}	45.	TEST-IV

Name of the Faculty	:	ER. ROHIT
Discipline	:	CIVIL
Semester	:	6 ^{тн}
Subject	:	DCS-II (CE-302N)
Lesson Plan Duration	:	15 weeks (from January, 2018 to April, 2018)

WEEK		THEORY
		ΤΟΡΙϹ
	LECTURE	(including assignment / test)
	DAY	
	1st	Elementary Plastic Analysis and Design: Introduction
1st	2nd	Scope of plastic analysis
	3rd	ultimate load carrying capacity of tension members
	4th	Numerical on tension member
	1st	Numerical on tension member
2nd	2nd	ultimate load carrying capacity of compression members
	3rd	Numerical of compression member
	4th	Numerical of compression member
	1st	flexural members
3rd	2nd	shape factor
	3rd	mechanisms, plastic collapse

	4th	plastic analysis applied to steel beams
	1st	Simple portal frames and design.
4th	2nd	Numerical related to above topic
	3rd	Numerical related to above topic
	4th	Assignment of Unit-I
	1st	Design of Water Tanks: Introduction,
5th	2nd	permissible stresses
	3rd	design of circular tanks
	4th	Design of rectangular tanks
	1st	Design of pressed steel tanks including staging
6th	2nd	Numerical related to above topic
	3rd	Numerical related to above topic
	4th	Numerical related to above topic
	1st	Design of Steel Stacks: Introduction
7th	2nd	various loads to be considered for the design of steel stacks
	3rd	design of steel stacks including foundation
	4th	Numerical related to above topic
	1st	Numerical related to above topic
8th	2nd	Numerical related to above topic
	3rd	Numerical related to above topic
	4th	Assignment of Unit -II
9th	1st	Towers: Introduction

9th	2nd	Transmission line towers
	3rd	microwave towers
	4th	Design loads
	1st	Classification of towers
10th	2nd	Design procedure and specification.
	3rd	Numerical related to above topic
	4th	Numerical related to above topic
	1st	Cold Formed Sections: Introduction
11th	2nd	brief description of various types of cold formed sections
	3rd	local buckling
	4th	concepts of effective width and effective sections
12th	1st	elements with stiffeners
	2nd	design of compression and bending elements
	3rd	Numerical related to above topic
	4th	Numerical related to above topic
	1st	Numerical related to above topic
13th	2nd	Numerical related to above topic
	3rd	Assignment of Unit -III
	4th	Industrial Buildings: Introduction
	1st	Loads
14th	2nd	general arrangement and stability
	3rd	design considerations
	4th	design of purlins

	1st	design of roof trusses
15th	2nd	industrial building frames
	3rd	bracings and stepped columns
	4th	Numerical related to above topic

Name of the Faculty	:	Er. TANUJ
Discipline	:	CIVIL
Semester	:	6 ^{тн}
Subject	:	I.E-I (CE-304N)
Lesson Plan Duration	:	15 weeks (from January, 2018 to April, 2018)

WEEK		THEORY
		ΤΟΡΙϹ
	LECTURE	(including assignment / test)
	DAY	
	1st	Introduction: Irrigation-necessity
1st	2nd	advantages, disadvantages
	3rd	impact of irrigation on human environment
	1st	need and development of irrigation in India
2nd	2nd	crops and crop seasons
	3rd	ideal cropping pattern and high yielding varieties of crops
3rd	1st	Soil-water relationship and irrigation methods: Soil-water relationship
	2nd	root zone soil water, infiltration
	3rd	Consumptive use, field capacity, wilting point
4th	1st	available moisture in soil, GCA, CCA, intensity of irrigation, delta, base period, Kor depth,

4th		core period, frequency of irrigation, duty of water, relation between delta
	2nd	duty and base period, irrigation requirement, flooding methods, border strip method, check basin and furrow method
	Зrd	assessment of irrigation water, sprinkler irrigation, favorable conditions, sprinkler systems
	1st	hydraulics of sprinkler irrigation, planning, design and maintenance of sprinkler systems
5th	2nd	drip irrigation-components parts, advantages and limitations, suitability of drip irrigation
	3rd	Canal irrigation: Classifications of canals
	1st	canal alignment, Inundation canals
6th	2nd	Bandhara irrigation, advantages and disadvantages
	3rd	Silt theories-Kennedy's theory
	1st	Lacey's theory, Drawbacks in Kennedy's & Lacey's theories
7th	2nd	comparison of Lacey's and Kennedy's theories
	3rd	Design of unlined canals based on Kennedy & Lacey's theories.
	1st	Lined canals: Types of lining
8th	2nd	selection of type of lining
	3rd	Economics of lining, maintenance of lined canals, silt removal
	1st	strengthening of channel banks, measurement of discharge in channels
9th	2nd	Design of lined canals, methods of providing drainage behind lining.
	3rd	Losses in canals, water logging and drainage: Losses in canals-Evaporation and seepage
	1st	water logging, causes and ill effects of water logging anti water logging measures
10th	2nd	Drainage of land, classification of drains - surface and subsurface drains
	3rd	Design considerations for surface drains, Advantages and maintenance of tile drains.

_	1st	River Training work: Classification of rivers
11th	2nd	river training and its objectives, classification of river training works
	3rd	Methods of river training, marginal embankments
12th	1st	guide banks, spurs, cutoffs, bank pitching and launching apron
	2nd	Canal outlets: Classification
	3rd	requirements of a good outlet, design of pipe, APM and open flume outlet
	1st	Flexibility proportionality, setting and sensitivity of outlet
13th	2nd	Tube-well irrigation : Types of tube wells - strainer type, cavity type and slotted type
	3rd	Type of strainers, Aquifer, porosity
	1st	uniformity coefficient, specific yield & specific retention
14th	2nd	coefficients of permeability, transmissibility and storage
	3rd	Yield or discharge of a tube well, Assumptions
	1st	Theim's & Dupuit's formulae, Limitations of Theim's and Dupuit's formulae
15th	2nd	Interference of tube wells with canal or adjoining tube-wells, causes of failure of tube wells
	3rd	Optimum capacity, Duty and delta of a tube well. Rehabilitation of tube well.

Name of the Faculty	:	ER. NEELAZ
Discipline	:	CIVIL
Semester	:	6 ^{тн}
Subject	:	DISASTER MANAGEMENT (CE-306N)

Lesson Plan Duration : 15 weeks (from January, 2018 to April, 2018)

WEEK	THEORY	
		ΤΟΡΙϹ
	LECTURE	(including assignment / test)
	DAY	
	1st	Introduction to Disaster Management:
1st	2nd	Define and describe disaster, hazard,
	3rd	emergency, vulnerability, risk and disaster management
	1st	Identify and describe the types of natural and non-natural disasters
2nd	2nd	Important phases of Disaster Management Cycle
	3rd	Disaster Mitigation and Preparedness: Natural Hazards
	1st	causes, distribution pattern, consequences
3rd	2nd	Mitigation measures for earth quake, tsunami
	3rd	cyclone, flood, landslide drought etc
	1st	Man-made hazards: causes
4th	2nd	Consequences mitigation measures for various industrial hazards/disasters

	3rd	Preparedness for natural disasters in urban areas
	1st	Hazard and Risk Assessment: Assessment of capacity
5th	2nd	vulnerability and risk
	3rd	vulnerability and risk mapping
	1st	stages in disaster recovery and associated problems
6th	2nd	Emergency Management Systems (EMS): introduction
	3rd	Emergency medical and essential public health services
	1st	response and recovery operations
7th	2nd	reconstruction and rehabilitation
	3rd	Assignment of above topic
	1st	Capacity Building: Gender sensitive disaster management approach and inculcate new skills and sharpen existing skills
8th		of government officials
	2nd	voluntary activists, development of professional and elected representative for effective disaster management
	3rd	role of media in effective disaster management
	1st	overview of disaster management in India
9th	2nd	role of agencies like NDMA, SDMA and other International agencies
	3rd	organizational structure, role of insurance sector
	1st	DM act and NDMA guidelines
10th	2nd	Application of Geo-informatics and Advanced Techniques: Introduction
	3rd	Use of Remote Sensing Systems (RSS) in disaster management
	1st	Use of GIS in disaster Management
11th	2nd	role of knowledge based expert systems in hazard scenario

	3rd	Using risks-time charts to plan for the future, early warning systems.
12th	1st	Assignment of above topic
	2nd	Integration of public policy: Introduction
	3rd	Planning and design of infrastructure for disaster management
	1st	Community based approach in disaster management
13th	2nd	methods for effective dissemination of information
	3rd	ecological and sustainable development models for disaster management
	1st	
14th	2nd	Case Studies: Lessons and experiences from various important disasters with specific reference to Civil Engineering
	3rd	
	1st	Case studies
15th	2nd	Case studies
	3rd	Assignment of above topic

Name of the Faculty : ER. NEELAZ

Discipline	:	CIVIL
------------	---	-------

Semester : 6^{TH}

Subject : G.T-II (CE-308N)

Lesson Plan Duration : 15 weeks (from January, 2018 to April, 2018)

WEEK	THEORY		
	1	ΤΟΡΙϹ	
	LECTURE	(including assignment / test)	
	DAY		
	1st	Earth Dams: Introduction	
1st	2nd	types of sections, earth dam foundations	
	3rd	causes of failure and criteria for safe design	
	1st	Control of seepage through the embankment	
2nd	2nd	control of seepage through the foundation, drainage of foundations	
	3rd	criterion for filter design. Introduction to rock fill dams.	
	1st	Stability of slopes: Causes of failure	
3rd	2nd	factors of safety, stability analysis of slopes-total stress analysis	
	3rd	effective stress analysis, stability of infinite slopes types of failures of finite slopes	
	1st	analysis of finite slopes-mass procedure, method ofslices	
4th	2nd	effect of pore pressure, Fellinius method to locate center of most critical slip	

		circle
	3rd	friction circle method, Tayler's stability number
	1st	slope stability of earth dam during steady seepage
5th	2nd	During sudden draw down and during and at the end of construction.
	3rd	Braced Cuts: Depth of unsupported vertical cut
	1st	sheeting and bracing for deep excavation
6th	2nd	movements associated with sheeting and bracing, modes of failure of braced cuts
	3rd	Pressure distribution behind sheeting.
	1st	Cofferdams: Introduction
7th	2nd	types of cofferdams, design and lateral stability of braced cofferdams
	3rd	design data for Cellular cofferdams
	1st	Stability analysis of cellular cofferdams on soil and rock, inter-lock stresses.
8th	2nd	Assignment of above topic
	3rd	Cantilever Sheet Piles: Purpose of sheet piles
	1st	cantilever sheet piles
9th	2nd	depth of embedment in granular soils-rigorous method, simplified procedure
	3rd	cantilever sheet pile, penetrating clay and limiting height of wall
	1st	Anchored Bulkheads: Methods of design
10th	2nd	free earth support method in cohesion less soil
	3rd	free earth support method in cohesive soil
	1st	fixed earth support method in cohesion less soils-Blum's equivalent beam method
11th	2nd	Assignment of unit-III
	3rd	

12th	1st	Soil Stabilization: Soil improvement
	2nd	shallow compaction, mechanical treatment, use of admixtures
	3rd	lime stabilization, cement stabilization, lime fly ash stabilization,
	1st	dynamic compaction and consolidation, bituminous stabilization
13th	2nd	Chemical stabilization, pre-compression, lime pile and column
	3rd	stone column, grouting, reinforced earth
	1st	Basics of Machine Foundations: Terminology
14th	2nd	characteristics elements of a vibratory systems,
	3rd	analysis of vibratory motions of a single degree freedom system- undamped free vibrations, undamped forced vibrations
	1st	criteria for satisfactory action of a machine foundation
15th	2nd	degrees of a freedom of a block foundation, Barken's soil spring constant
	3rd	Barken's method of a determining natural frequency of a block foundation subjected to vertical oscillations

Name of the Faculty	:	ER VIKRAM
Discipline	:	CIVIL
Semester	:	6 ^{тн}
Subject	:	T.E-I (CE-310N)& TRANSPORTATION ENGG-I (P) (CE-314N)
Lesson Plan Duration :		15 weeks (from January, 2018 to April, 2018)

Work Load (Lecture/Practical) per week (in hours): Lectures – 03, Practical - 04

WEEK		THEORY		PRACTICAL	
		ΤΟΡΙϹ			
	LECTURE	(including assignment /	PRACTICAL	ΤΟΡΙϹ	
	DAY	test)	DAY		
1st	1st	Introduction: Transportation and its importance	1 st and 2 nd	1. To determine the toughness of the aggregate by aggregate Impact Test.	
	2nd	Different modes of transportation			
	3rd	Brief review of history of road development in India and abroad: Roman, Tresagne, Telford and Macadam constructions			
	1st	Road patterns. Classification of roads	1 st and 2 nd	2. To determine the hardness of the aggregate by Los-	
2nd	2nd	Objectives of highway planning, Planning surveys		Angeles Abrasion Test.	
	3rd	Saturation system of planning			
3rd	1st	Highway Plans, Highway Alignment and Surveys: Introduction	1 st and 2 nd	3. To determine the hardness of the aggregate by Dorry's Abrasion Test on Aggregates.	
	2nd	Main features of 20 years road development plans in India.			

	3rd	Requirements of an ideal highway alignment			
	1st	Factors affecting alignment.	1 st and2 nd COPY CHECK AND VIVA VOCE		
4th	2nd	Surveys for highway alignment			
	3rd	Assignment of Unit-I			
5th	1st	Cross Section Elements and Sight Distance Considerations: Cross section elements	1 and2 4 . To determine the hardness of the aggregate by Deval Attrition Test on Aggregates.		
	2nd	friction, carriageway, formation width, land width, camber			
	3rd	IRC recommended values. Types of terrain Design speed			
	1st	Sight distance, stopping sight distance	1 st and 2 nd	5. To determine the Crushing Strength Test on	
6th	2nd	overtaking sight distance, overtaking zones,		Aggregates.	
	3rd	intermediate sight distance, sight distance at intersections			
	1st	Head light sight distance, set back distance	1 st and 2 nd	6. To determine the grade and hardness of the bitumen	
7th	2nd	Critical locations for sight distance		by Penetration Test.	
	3rd	Design of Horizontal and Vertical Alignment: Effects of centrifugal force			
	1st	Design of super-elevation	1 st and 2 nd	COPY CHECK AND VIVA	
8th	2nd	Providing super elevation in the field. Radius of circular curves	tion in the field.		
	3rd	Extra-widening. Type and length of transition curves			
	1st	Gradient, types, values. Summit curves and valley curves	1 st and 2 nd	7. To determine the elastic property of the bitumen by	
9th	2nd	Their design criterion. Grade		Ductility Test.	

		compensation on curves		
	3rd	Assignment of unit-II		
10th	1st	1stTraffic Characteristics and Traffic Surveys: Road user and vehicular characteristics.1st and2nd8. To determine the and hardness of the by Viscosity Test.		8. To determine the grade and hardness of the bitumen by Viscosity Test.
	2nd	Traffic studies such as volume, speed and O & D study		
	3rd	Parking and accident studies. Fundamental diagram of traffic flow.		
	1st Level of service. PCU. Capacity for non-urban roads 1 st and2 st COPY CHECK VOCE		COPY CHECK AND VIVA VOCE	
11th	2nd	Causes and preventive measures for road accidents		
	3rd	Traffic Control Devices: Traffic control devices: signs, signals, markings and islands.		
12th	1st	Intersections at grade and grade separated intersections.	1 st and 2 nd	9. To determine the Softening Point Test on Bitumen.
	2nd	Design of a rotary.		
	3rd Types of grade separated intersections			
13th	1stDesign of an isolated fixed time signal by IRC method.113th1		1 st and 2 nd	10. To determine the Flash and Fire Point Test on Bitumen.
	2nd	Types of signals. Types of signs.		
	3rd	Highway Materials: Soil and Aggregates: Sub grade soil evaluation: CBR test,.		
	1st	plate bearing test	1 st and 2 nd	Final copies check
14th	2nd	Desirable properties of aggregates. Various tests, testing procedures and IRC/IS specification for suitability of aggregates.		

	3rd	Proportioning of aggregates for road construction by trial and error and Routhfuch method.		
15th	1st	Bituminous Materials and Bituminous Mixes: Types of bituminous materials: bitumen, tar, cutback and emulsions.	1 st and 2 nd	Internal viva
	2nd	Various tests, testing procedures and IRS/IS specifications for suitability of bituminous materials in road construction. Bituminous mix, desirable properties.		
	3rd	Marshall' method of mix design. Basic concept of use of polymers and rubber modified bitumen in bituminous mixes.		

Name of the Faculty : ER. TEJINDER SINGH

:	CIVIL
	:

Semester : 6^{TH}

Subject : W.S.T (CE-312E)

Lesson Plan Duration : 15 weeks (from January, 2018 to April, 2018)

WEEK	THEORY	
		ΤΟΡΙϹ
	LECTURE	(including assignment / test)
	DAY	
	1st	Water Quantity:Introdction
1st	2nd	Importance and necessity of water supply scheme requirement
	3rd	Water demands and its variations
2nd	1st	Estimation of total quantity of water
	2nd	Population forecasting
	3rd	Quality and quantity of surface and ground water sources
	1st	Selection of a source of water supply
3rd	2nd	Types of intakes.
	3rd	Assignment of Unit- I
4th	1st	Water Quality:Introduction

4th	2nd	Impurities in water and their sanitary significance
	3rd	Physical, chemical and bacteriological analysis of water
	1st	Numerical of above topic
5th	2nd	Numerical of above topic
	3rd	Assignment of Unit- II
	1st	Water Treatment: Introduction
6th	2nd	Objectives, treatment processes and their sequence in conventional treatment plant
	3rd	sedimentation – plain and aided with coagulation
	1st	Types, features and design aspects
7th	2nd	Mixing basins and Flocculation units
	3rd	Numerical of above topic
	1st	Numerical of above topic
8th	2nd	Filtration – mechanism involved
	3rd	types of filters
	1st	slow and rapid sand filtration units (features and design aspects
9th	2nd	Disinfection principles and aeration
	3rd	Numerical of above topic
	1st	Numerical of above topic
10th	2nd	Numerical of above topic
	3rd	Assignment of Unit- III
	1st	Water Distribution: Introduction
11th	2nd	Distribution system – Gravity system

	3rd	Pumping System
12th	1st	Dual system
	2nd	Layout of Distribution System
	3rd	Dead End System
	1st	Grid Iron System
13th	2nd	Ring System
	3rd	Radial System
	1st	their merits and demerits
14th	2nd	Distribution Reservoir-functions
	3rd	Determination of storage capacity
	1st	Numerical of above topic
15th	2nd	Numerical of above topic
	3rd	Assignment of Unit- IV

Name of the Faculty : ER TEJINDER SINGH

Discipline : CIVIL

Semester : 6^{TH}

Subject : ENVIRONMENTAL ENGINEERING-I (P) (CE-316N)

Lesson Plan Duration : 15 weeks (from January, 2018 to April, 2018)

Work Load (Lecture/Practical) per week (in hours): practical -04

	PRACTICAL		
WEEK	PRACTICAL DAY	ΤΟΡΙϹ	
1 st	1 st and 2 nd	1. To determine the pH value of a given sample of water waste water.	
2 nd	1 st and 2 nd	2. To determine the turbidity in given water waste water sample.	
3 rd	1 st and 2 nd	3. To determine the acidity of given sample of water waste water	
4 th	1 st and 2 nd	COPY CHECK AND VIVA VOCE	
5 th	1 st and 2 nd	4. To determine the alkalinity of given sample of water waste water.	
6 th	1 st and2 nd	5. To determine temporary and permanent hardness in a given water sample.	
7 th	1 st and2 nd	6. To determine the chlorine does required for a given water sample.	
8 th	1 st and 2 nd	COPY CHECK AND VIVA VOCE	
9 th	1 st and 2 nd	7. To determine total suspended, suspended, dissolved settable solids in a sewage sample.	
10 th	1 st and 2 nd	8. To determine the chloride concentration in a given sample of waste water.	
11 th	1 st and 2 nd	COPY CHECK AND VIVA VOCE	
12 th	1 st and 2 nd	9. To determine the sulphate concentration in given water sample.	

13 th	1 st and2 nd	Final copies check
14 th	1 st and2 nd	Final copies check
15 th	1 st and 2 nd	Internal viva

Name of the Faculty : ER TANUJ

Discipline : CIVIL

Semester : 6^{TH}

Subject : CAD Lab (CE-318N)

Lesson Plan Duration : 15 weeks (from January, 2018 to April, 2018)

Work Load (Lecture/Practical) per week (in hours): practical -06

		PRACTICAL
WEEK	PRACTICAL DAY	ΤΟΡΙϹ
1 st	1 st and 2 nd , 3 rd	Detailed drawing of the following reinforced concrete structures:
		1. Footings: Isolated footings, combined footings, rectangular, trapezoidal, strip, strap, raft footings
2 nd	1 st and 2 nd , 3 rd	2. Domes: Spherical and conical domes.
3 rd	1 st and 2 nd , 3 rd	COPY CHECK AND VIVA VOCE
4 th	1 st and 2 nd , 3 rd	3. Water tanks: rectangular, cylindrical, Intz type overhead water tank.
5 th	1 st and 2 nd , 3 rd	4. RCC Flat slabs
6 th	1 st and 2 nd , 3 rd	5. Masonry columns, bearing walls, retaining walls.
7 th	1 st and 2 nd , 3 rd	COPY CHECK AND VIVA VOCE
8 th	1 st and 2 nd , 3 rd	Detailed design and drawing of the following steel structures:
		6. Columns, base plates and their foundations
9 th	1 st and 2 nd , 3 rd	7. Plate Girder (welded)
10 th	1 st and 2 nd , 3 rd	COPY CHECK AND VIVA VOCE

11 th	1 st and 2 nd ,3 rd	8. Gantry Girder
12 th	1 st and rd ,3	9. Simple roof trusses
13 th	1 st and rd ,3	Final copies check
14 th	1 st and 2 nd , 3 rd	Final copies check
15 th	1 st and 2 nd , 3 rd	Internal viva

Name of the Faculty : ER AJAY KUMAR

Discipline : CIVIL

Semester : 8TH

Subject : B.E (CE-402E)

Lesson Plan Duration : 15 weeks (from January, 2018 to April, 2018)

WEEK	THEORY		
		ΤΟΡΙϹ	
	LECTURE	(including assignment / test)	
	DAY		
	1st	Introduction: Definition	
1st	2nd	components of bridge, , , ,	
	3rd	classification of bridges	
	1st	selection of site	
2nd	2nd	economical span, aesthetics consideration	
	3rd	Necessary investigations and essential design data.	
3rd	1st	Standard Specifications for Roads and Railways Bridges: General	
	2nd	Indian Road Congress Bridge Code	
	3rd	width of carriage way, clearance	
4th	1st	various loads to be considered for the design of roads and railway bridges	

	2nd	detailed explanation of IRC standard live loads
	3rd	Assignment of unit-I
	1st	Design Consideration for R. C. C. Bridges: Introduction
5th	2nd	Various types of R.C.C. bridges(brief description of each type)
	3rd	Various types of R.C.C. bridges(brief description of each type)
	1st	Various types of R.C.C. bridges(brief description of each type)
6th	2nd	design of R.C.C. culvert
	3rd	Numerical of culvert
	1st	Numerical of culvert
7th	2nd	Numerical of culvert
	3rd	Design of T-beam bridges.
	1st	Numerical of T-beam
8th	2nd	Numerical of T-beam
	3rd	Numerical of T-beam
	1st	Numerical of L-beam
9th	2nd 3rd	Design Consideration for Steel Bridges: Various types of steel bridges (brief description of each), design of truss and
	1st	plate girder bridges.
10th	2nd	NUMERICAL
	3rd	NUMERICAL
	1st	NUMERICAL
11th	2nd	Hydraulic & Structural Design: Piers,

		Abutments,.	
	3rd	NUMEICAL BASED on piers and abutments.	
12th	1st	NUMEICAL BASED on piers and abutments.	T
	2nd	wing-wall and approaches	
	3rd	NUMERICAL based on wing wall	
	1st	Numerical	
13th	2nd	Brief Description: Bearings, joints, articulation and other details.	
	3rd	Numerical based on bearings	
	1st	Roller bearing	
14th	2nd	Steel rock bearing	
	3rd	Bridge Foundation: Various types, necessary investigations and	
	1st	Design criteria of well foundation.	
15th	2nd	Numerical on bridge foundation	
	3rd	Design of pile foundation	

Name of the Faculty	:	Er. TEJINDER SINGH
Discipline	:	CIVIL
Semester	:	8 th
Subject	:	I.WWT-I (CE-404N)
Lesson Plan Duration	:	15 weeks (from January, 2018 to April, 2018)

WEEK	THEORY		
		ΤΟΡΙϹ	
	LECTURE	(including assignment / test)	
	DAY		
_	1st	Effects of industrial wastes on streams,	
1st	2nd	sewerage systems	
	3rd	Wastewater treatment plants.	
	1st	equalization	
2nd	2nd	proportioning.	
	3rd	neutralization,	
	1st	strength reduction,	
3rd	2nd	volume reduction,	

	3rd	reuse of waste water,
	1st	, process change,
4th	2nd	conservation of water
	3rd	Minimizing the effects of industrial effluents on receiving streams
	1st	Industrial effluent standards for disposal into on land for irrigation.
5th	2nd	Population equivalent
	3rd	Numerical based population equivalent
	1st	Numerical of dairy waste
6th	2nd	Numerical of tannery waste
	3rd	Radioactive wastes.
	1st	thermal power plants
7th	2nd	nitrogenous fertilizers
	3rd	oil refinery
	1st	metal plating,
8th	2nd	pulp & paper
	3rd	dairy
	1st	tannery,
9th	2nd	sugar mill,
	3rd	distillery
	1st	Flow diagram of sugar mill
10th	2nd	Flow diagram of dairy waste
	3rd	Flow diagram of textile waste

	1st	Numerical
11th	2nd	Numerical
	3rd	Numerical
12th	1st	Numerical
	2nd	Numerical
	3rd	Industrial effluent standards for disposal into inland surface water sources .
13th	1st	Study of the following Industries from waste generation, quality and its treatment including brief overview of manufacturing process: Textile.
	2nd	Minimizing the effects of industrial effluents on waste water treatment plants .
	3rd	Numerical
	1st	Numerical
14th	2nd	Numerical
-	3rd	Numerical
	1st	Numerical
15th	2nd	Numerical
	3rd	Numerical

Name of the Faculty	:	ER. TANUJ
Discipline	:	CIVIL
Semester	:	8 TH
Subject	:	RAILWAY AND AIRPORT (CE-406N)
Lesson Plan Duration	:	15 weeks (from January, 2018 to April, 2018)

WEEK	THEORY		
		ΤΟΡΙϹ	
	LECTURE	(including assignment / test)	
	DAY		
	1st	Introduction, Permanent Way And Rails Rail transportation and its importance in India	
1st	2nd	Permanent way: requirements and components. Gauges in India and abroad.	
	3rd	Selection of gauge. Coning of wheels. Adzing of sleepers.	
	1st	Rails: functions, composition of rail steel, types of rail sections,	
2nd	2nd	requirements of an ideal rail section, length of rails. Defects in rails	
	3rd	Creep of rails. Long welded rails and continuously welded rails.	
3rd	1st	Sleepers, Fastenings And Ballast Sleepers: functions, requirements of an ideal sleeper.	
	2nd	Types of sleepers: wooden, cast iron, steel and concrete sleepers, advantages, disadvantages and suitability of each type	

	3rd	. Sleeper density. Fastenings for various types of sleepers: fish plates, spikes, bolts, bearing plates, keys, chairs, jaws, tie bars
4th	1st	. Elastic fastenings. Ballast: functions, requirements, types of ballast and their suitability.
	2nd	Points And Crossings Necessity. Turnout: various components, working principle. Switch: components, types
	3rd	Crossing: components and types. Design elements of a turnout, design of a simple turnout.
	1st	Layout plan of track junctions: crossovers,
5th	2nd	Diamond crossing, single-ouble slips, throw switch, turn table, triangle.
		Signals: objects, types and classification.
	3rd	Semaphore signal: components, working principle
	1st	Requirements / principles of a good interlocking system. Brief introduction to devices used in interlocking
6th	2nd	Methods of control of train movements: absolute block system, automatic block system,
	3rd	centralized train control and automatic train control systems.
	1st	Geometric Design Of The Track Gradients, grade compensation. Super elevation, cant deficiency
7th	2nd	, negative super elevation. Maximum permissible speed on curves
	3rd	Tractive resistances, types. Hauling capacity of a locomotive. Stations, Yards And Track Maintenance
8th	1st	Stations: functions and classification. Junction, non-junction and terminal stations.
	2nd	Yards: functions, types. Marshalling yard: functions, types
	3rd	. Maintenance of railway track: necessity, types of maintenance.
	1st	Brief introduction to mechanized maintenance, M.S.P and D.T.M. KUKNotes.com

9th		
	2nd	Introduction And Airport Planning Air transportation
	3rd	its importance and characteristics, status in India. Layout plan of an airport
	1st	its basic elements: terminal area, apron, taxiway, runway, hanger
10th	2nd	Aircraft characteristics, their effect on elements of an airport
	3rd	Site selection of an airport. lassification of airports.
4 4 ± b	1st	Runway Layout And Pavement Design Runway orientation, Wind Rose diagram
11th	2nd	. Basic runway length. Corrections to basic runway length. Runway patterns.
	3rd	Difference between highway and runway pavement.
12th	1st	Types of runway pavements.
	2nd	Design factors for runway pavement
	3rd	Brief introduction to design of thickness of a runway pavement
	1st	NUMERICAL
13th	2nd	NUMERICAL
	3rd	NUMERICAL
	1st	NUMERICAL
14th	2nd	
	3rd	
	1st	NUMERICAL
15th	2nd	NUMERICAL
	3rd	NUMERICAL

Name of the Faculty	:	ER. AJAY KUMAR
Discipline	:	CIVIL
Semester	:	8 th
Subject	:	E&A (CE-408E)
Lesson Plan Duration	:	15 weeks (from January, 2018 to April, 2018)

WEEK	THEORY		
		ΤΟΡΙϹ	
	LECTURE	(including assignment / test)	
	DAY		
	1st	Estimate: Principles of estimation, units, items of work	
1st	2nd	different kinds of estimates, different methods of estimation,	
	3rd	Estimation of materials in single room building	
	1st	Two roomed building with different sections of walls	
2nd	2nd	Foundation, floors and roofs	
	3rd	R.B. and R.C.C. works	
	1st	Plastering, White-washing,	
3rd	2nd	Distempering and painting	
	3rd	Doors and windows, lump sum items	
	1st	Estimates of canals, roads etc	
4th	2nd	Specification of Works	

		Necessity of specifications, types of specifications, general	
		specifications	
	2 md	Specification for bricks, company	
	3ra	Specification for bricks, cement,	
	1st	sand, water, lime, reinforcement	
5th	2nd	Detailed specifications for Farthwork Cement	
	3rd	Detailed specifications for concrete, brick work.	
	1st	Detailed specifications for floorings, D.P.C., R.C.C	
6th	2nd	Cement plastering	
	3rd	White and color washing.	
	1st	Distempering, painting.	
7th	2nd	Numerical	
	3rd	numerical	
	1st	numerical	
8th	2nd	Rate Analysis :Purpose, importance and requirements of rate analysis,	
	3rd	Units of measurement,	
	1st	. preparation of rate analysis	
9th	2nd	Procedure of rate analysis for items:- Earthwork, concrete works	
	3rd	Procedure of rate analysis for items:- R.C.C. works, reinforced	
		brick work.	
	1st	Procedure of rate analysis for items:- plastering.	
10th	2nd	Procedure of rate analysis for items:- painting, finishing(white- washing, distempering).	
	3rd	Numerical	

	1st	Numerical	
11+h			
IIIN	2nd	Numerical	
	3rd	Numerical	
12th	1st	Public Works Account: Introduction,	
	2nd	function of P.W. department	
	3rd	contract, guidelines	
	1st	Types of contracts	
13th	2nd	Their advantages and disadvantages	
	3rd	Tender and acceptance of tender	
	1st	Earnest money, security money, retention money	
14th	2nd	Measurement book, cash book.	
	3rd	Preparation, examination and payment of bills	
	1st	First and final bills	
15th	2nd	Administrative sanction, technical sanction.	
	3rd	numerical	

Name of the Faculty	:	ER VIKRAM
Discipline	:	CIVIL
Semester	:	8 th
Subject	:	GEOSYNTHETICS (CE-414E)
Lesson Plan Duration	:	15 weeks (from January, 2018 to April, 2018)

WEEK	THEORY		
		ΤΟΡΙϹ	
	LECTURE	(including assignment / test)	
	DAY		
	1st	INTRODUCTION:- Historical Development, The Nomenclature	
1st	2nd	Function ,use around the world	
	3rd	Applications, Development in India	
	1st	Raw materials, Durability,	
2nd	2nd	Degrading Agencies, polymers, Biological Resistance	
	3rd	Chemical Resistance, Weathering Resistance	
	1st	Manufacturing Method: Fiber, Yarn	
3rd	2nd	Nonwoven Geotextiles, Woven Textile	
	3rd	D.S.F , Fabric Material	

	1st	Geogrid-Testing and Evaluation:Factor affecting Testing
4th	2nd	Sampling , physical properties
	3rd	Mechanical properties under Uniaxial Loading, Creep testing
	1st	Creep testing
5th		
	2nd	Erosion control with Giogrid:Wind Erosion
	3rd	Rain water Erosion
	1st	Control measures, Placement of Giogrid
6th		
	2nd	Bearing capacity improvement with Giogrid:Advantage
	3rd	Mechanism,Mode of failure
	1st	Numerical
7th	2nd	Numerical
	3rd	Friction coefficient, experiment studies
	1st	Numerical
8th	2nd	Numerical
	3rd	Numerical
	1st	Introduction of Application of Giosynthetic inWater Resources projects:
9th	2nd	Case studies: Dharoidam ,
	3rd	Hiran-2 Dam
	1st	Meda creek
10th	2nd	Irrigation scheme
	3rd	Class Test

	1st	Lining of Kakarapar canal
11th	2nd	Rivision of Dharoidam
	3rd	Numerical
12th	1st	Class test
	2nd	Revise the Unit-1
	3rd	Class test of unit-1
	1st	Revision of Unit-2
13th		
	2nd	Class test of Unit-2
	3rd	Revise unit-3
	1st	Class test of unit-3
14th	2nd	Revise unit-4
	3rd	Class test of unit-4
	1st	numerical
15th	2nd	numerical
	3rd	Class test of whole syllabus

Name of the Faculty : ER. ASHMINDER SINGH

Discipline : CIVIL

Semester : 8TH

Subject : EIA (CE-422E)

Lesson Plan Duration : 15 weeks (from January, 2018 to April, 2018)

WEEK		THEORY
		ΤΟΡΙϹ
	LECTURE	(including assignment / test)
	DAY	
	1st	ENVIRONMENT AND HUMAN ACTIVITY
1st	2nd	RESOURCES
	3rd	Pollution
	1st	Reuse
2nd	2nd	Environment management
	3rd	Management of aquatic environment
	1st	Water quality control
3rd	2nd	Drainage basin activity
	3rd	Impact of human activity on aquatic resources.
	1st	The control measure
4th	2nd	Regional planning

	3rd	Air quality management
	1st	Atmosphere
5th	2nd	Effect of human activity on air quality
	3rd	Waste management
	1st	Disposal alternative
6th	2nd	Optimization
	3rd	Planning of waste disposal
	1st	Waste management
7th	2nd	Waste disposal methods
	3rd	Impact of waste disposal of human activity
	1st	Land use management
8th	2nd	Impact of land use on human life
	3rd	Control of hazardous in land use
	1st	Management of land use
9th	2nd	Environment assessment:- national environment policy
	3rd	Implication of environment
	1st	Assessment in design process.prepration of assessment
10th	2nd	General requirement of environmental standards.
	3rd	Technique of setting standards
	1st	Case studies of EIA
11th	2nd	River valley projects
	3rd	Thermal power projects
12th	1st	Matrix methods

	2nd	Numerical
	3rd	Pollution control
	1st	Water pollutions control
13th	2nd	Assignments based on matrix methods
	3rd	Assignment checked
	1st	Air quality management
14th	2nd	Atmosphere
	3rd	Effect of human activity on air quality
	1st	Waste management
15th	2nd	Disposal alternative
	3rd	Optimization

Name of the Faculty : ER VIKRAM

Discipline	:	CIVIL
------------	---	-------

Semester : 8TH

Subject : TRANSPORTATION ENGINEERING – II (P) (CE-426E)

Lesson Plan Duration : 15 weeks (from January, 2018 to April, 2018)

Work Load (Lecture/Practical) per week (in hours): practical -04

	PRACTICAL	
WEEK	PRACTICAL DAY	ΤΟΡΙϹ
1 st	1 st and 2 nd	Flakiness and Elongation Index of aggregates.
2 nd	1 st and 2 nd	Specific gravity and water absorption test on aggregates.
3 rd	1 st and 2 nd	Specific gravity of bitumen.
4 th	1 st and 2 nd	COPY CHECK AND VIVA VOCE
5 th	1 st and 2 nd	Proportioning of aggregates.
6 th	1 st and 2 nd	Marshall's stability test.
7 th	1 st and2 nd	Stripping test on aggregates.
8 th	1 st and2 nd	COPY CHECK AND VIVA VOCE
9 th	1 st and 2 nd	Determination of bitumen content
10 th	1 st and 2 nd	CBR lab test on soil.
11 th	1 st and 2 nd	COPY CHECK AND VIVA VOCE
12 th	1 st and 2 nd	Traffic volume study using videography technique.

13 th	1 st and 2 nd	Traffic speed study using videography technique.
14 th	1 st and 2 nd	Final copies check
15 th	1 st and 2 nd	Internal viva

Name of the Faculty : ER ASHMINDER SINGH

Discipline : CIVIL

Semester : **8**[™]

Subject : ENVIRONMENTAL ENGINEERING-II (P) (CE-428E)

Lesson Plan Duration : 15 weeks (from January, 2018 to April, 2018)

Work Load (Lecture/Practical) per week (in hours): practical -04

	PRACTICAL	
WEEK	PRACTICAL DAY	ΤΟΡΙϹ
1 st	1 st and 2 nd	To determine the acidity of a sewage sample.
2 nd	1 st and 2 nd	To determine the alkanity of a sewage sample.
3 rd	1 st and 2 nd	To determine total, suspended, dissolved and settable solids in a sewage sample.
4 th	1 st and2 nd	COPY CHECK AND VIVA VOCE
5 th	1 st and 2 nd	To determine volatile and fixed solids in a sewage sample.
6 th	1 st and 2 nd	To determine oil and grease in a sewage sample
7 th	1 st and 2 nd	To determine the chloride concentration in a sewage sample
8 th	1 st and2 nd	COPY CHECK AND VIVA VOCE
9 th	1 st and2 nd	To determine the sulphate concentration in a sewage sample.

10 th	1 st and 2 nd	To determine the B.O.D. of a given sewage sample
11 th	1 st and 2 nd	COPY CHECK AND VIVA VOCE
12 th	1 st and2 nd	To determine the C.O.D. of a given sewage sample
13 th	1 st and 2 nd	To determine the T.O.C. of a given sewage sample
14 th	1 st and 2 nd	To determine the fecal count of a given sewage sample
15	1 and 2	Microscopic studies of a sewage